
WireTap: Breaking Server SGX via DRAMBus Interposition
Alex Seto

Purdue University
West Lafayette, IN, USA

Oytun Kuday Duran
Georgia Tech

Atlanta, GA, USA

Samy Amer
Georgia Tech

Atlanta, GA, USA

Jalen Chuang
Georgia Tech

Atlanta, GA, USA

Stephan van Schaik
van Schaik, LLC

Ann Arbor, MI, USA

Daniel Genkin
Georgia Tech

Atlanta, GA, USA

Christina Garman
Purdue University

West Lafayette, IN, USA

Abstract

Intel’s SoftwareGuard eXtension (SGX) aims to offer strong integrity
and confidentiality properties, even in the presence of root-level at-
tackers. However, while Intel clearly indicates that SGX offers no
security against attackers with physical access, many current real
world SGX deployments are actually done in potentially adversarial
environments, where node operators have a financial incentive to
subvert computations performed inside SGX enclaves. While the
two threat models clearly differ, a common conception is that phys-
ical attacks on SGX require expensive laboratory equipment, thus
putting them out of reach of hobbyist-level attackers.

In thisworkwechallenge this belief, showinghowsimplememory
bus interposition hardware can be constructed cheaply and easily
in basic environments, using equipment easily purchased on the
internet. We then combine our setup with SGX’s recent migration
from client CPUs to servers, which resulted in a weaker (and deter-
ministic) memory encryption being used to encrypt the machine’s
physical memory. Applying our acquisition setup to SGX’s attesta-
tion enclaves, we are able to extract an SGX attestation key from a
machine in fully trusted status.

Finally, we study the real world implication of such SGX breaches,
by examining how SGX-backed blockchain deployments perform
in the presence of these adversaries. As many of these deployments
allow any SGXmachine in trusted status to perform critical network
functionality, we show end-to-end attacks on both confidentiality
and integrity guarantees of deployments with multi-million dollar
market caps, allowing attackers to disclose confidential transactions
or illegitimately obtain transaction rewards.

CCS Concepts

• Security and privacy→ Side-channel analysis and counter-

measures;Hardware-based security protocols;Hardware re-

verse engineering; •Hardware→ Buses and high-speed links.

Keywords

SideChannels,TEE,HardwareSecurity,Memory,DRAM,Blockchain
ACMReference Format:

Alex Seto, Oytun Kuday Duran, Samy Amer, Jalen Chuang, Stephan van
Schaik, Daniel Genkin, and Christina Garman. 2025. WireTap: Breaking

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765204

Server SGX via DRAM Bus Interposition. In Proceedings of the 2025 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’25),
October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3719027.3765204

1 Introduction

Trusted Execution Environments (TEEs) promise to revolutionize
computing, giving confidentiality and integrity guarantees even in
the presence of root-level adversaries with nearly unlimited soft-
ware capabilities. Using TEEs, clients can now offload their data and
computation to untrusted cloud providers, while obtaining strong
guarantees about the correctness of their offloaded computation and
the confidentiality of their secret data. While many examples such
as AMD’s SEV or ARM’s TrustZone exist, perhaps the most mature
TEE example is Intel’s Software Guard eXtensions (SGX), which has
recently been migrated from low-end client CPUs to full fledged
data-center grade Xeon Scalable processors.

Recognizing the potential of strong integrity and confidential-
ity guarantees at near native-level performance, SGX has thus far
received adoption primarily in the blockchain community, where
(confidential) transactions are executed by enclaves, allowing their
contents to be protected by SGX’s security guarantees. Starting from
humble origins of initial academic prototypes [7, 33, 75], SGX has
now seen usage inmany real-worldWeb3 deployments, from simple
confidential transactions [51], to confidential smart contracts [46],
to even complicated schemes of arbitrary delegation of computation
or storage [10, 13]. Together, these deployments service numerous
users and have a combinedmarket cap of hundreds ofmillions of dol-
lars, ushering in a new age of hardware-backed privacy guarantees.

However, when comparing SGX’s threat model to its actual de-
ployments, an unsettling gap arises. More specifically, while Intel
claims that SGXdoes not offer completemitigation in the presence of
hardware attackers with physical access [22, 23], Web3-related SGX
deployments are often permissionless, meaning any node can join
the network regardless of its physical location, bymerely presenting
a trusted attestation status. Indeed, real-world deployments often
acknowledge SGX’s checkered security record [58, 62, 76], often ar-
guing that SGX attacks are only possible in carefully-controlled and
unrealistic lab settings while requiring expensive hardware attack
equipment [52]. Thus, given the clear gap in SGX threat modeling,
in this paper we ask the following questions:

What are the true costs of mounting physical attacks on SGX hard-
ware? In particular, can such attacks be mounted by low-budget hob-
byists? And if so, how can one best defend against them?

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3719027.3765204
https://doi.org/10.1145/3719027.3765204

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

Our Contributions

In this paper we positively answer the above questions, demonstrat-
ing howmemory interposition attacks on server-grade SGX can be
done cheaply and simply, by hobbyists with under $1000 budget. We
empirically showhowour interposition setup is able to extract secret
attestation keys frommachines in fully trusted status, allowing us to
run enclaves outside of SGX’s protections. Finally, with SGX’s con-
fidentiality and integrity guarantees successfully breached, we pro-
ceed with evaluating the implications of SGX attestation key extrac-
tion attacks on real-world SGX deployments totaling amarket cap of
over $135M USD. Examining three main case studies, we show how
SGX breaches result in loss of both transaction privacy and integrity
guarantees, in some cases even allowing attackers to undetectably
reap rewards and profit without doing any actual legitimate work.
Constructing a CheapMemory Interposition Setup. While
prior work cites costs of memory interposition setups to be around
$170,000 [34], we begin by showing that such numbers are vastly
overestimated, allowing hobbyist-level attackers to perform DIMM
interposition attacks with under $1000. We achieve this by first
showing how to significantly slow down DDR4 bus transactions by
modifying the DIMM’s internal metadata, thus significantly simpli-
fying our acquisition setup. We then show how DIMM interposition
probes can be constructed from readily-available supplies from sec-
ondhand electronic marketplaces, using just tweezers and simple
soldering irons. Finally, we show how both can be used to observe
DDR4 DRAM traffic, using outdated (and thus cheap) logic analyz-
ers not originally intended for DDR4 analysis (or even capable of
operating near DDR4 clock speeds). See Figure 1.

Figure 1: Ourmemory interposition setup, with target machine (left) and logic

analyzer (right). Notice the gray wires from the DIMM interposer (middle).

ObtainingEnclaveControl. With our interposition setup in place,
we proceed to gain a sufficient level of control over SGX enclaves in
production status. First, as our interposition setup is only capable of
observing traffic to a single DDR4 DIMM out of a minimum of eight
required for SGX activation, we must reverse engineer the system’s
mapping between physical address and DIMM locations. With the
system’smappings in hand, our next step is tomodify the SGXdriver
to place the enclave place of interest on the DIMM connected to our
logic analyzer. Finally, to make the traffic observable on the DRAM
bus we overcome the system’s caching by flushing, using an enclave
control channel to precisely synchronize cache flushing events.
Attacking SGX Attestation. Having achieved the level of en-
clave control required for observing enclave memory traffic, we
proceed to attacking SGX’s cryptographic security mechanisms. To

that aim, we first verify Intel’s use of deterministic XTS encryp-
tion, characterizing its dependence on the data’s physical address.
We then continue to attacking SGX’s DCAP attestation mechanism
inside Intel’s quoting enclave, using a machine in a fully trusted
attestation status. Here, we apply the techniques from the previous
step to observe encrypted memory traffic during ECDSA signing
operations, essentially obtaining a ciphertext equality oracle during
ECDSA’s scalar by point operation. With this method, we are able
to extract the machine’s attestation key within 45 minutes, with the
main limitation being the limited IO bandwidth of our Pentium III
based logic analyzer. Finally, to the best of our knowledge, this is the
first demonstration of SGX DCAP attestation key extraction from
Xeon Scalable servers in fully trusted status.
Breaking Enclave Confidentiality. Having recovered the ma-
chine’s attestation key, we now proceed to investigate how real
world SGX deployments fail in the presence of key compromise. We
noticed thatwhen facedwith such an attack, numerous deployments
have complete breakdowns of their confidentiality guarantees, re-
sulting in passive data decryption. As such, we begin by analyzing
phala and secret, two privacy-preserving smart contract networks
with $79M USD and $55M USD market caps respectively. These
networks utilize SGX enclaves to ensure the confidentiality of smart
contract data, as well as for key derivation, distribution, and storage.
We demonstrate how an attacker can extract various keys used to
encrypt contract data from the enclaves by forging quotes using a
custom quoting enclave, allowing us to breach confidentiality and
carry out network wide decryption of smart contract state.
BreakingEnclave Integrity. Wethenproceed to studycrust, a de-
centralized blockchain storage system that utilizes SGX enclaves to
guarantee proof of storage of files. Unlike phala and secret, crust
relies on SGX and its attestation mechanism primarily to ensure
integrity of computation. The attestation process should guarantee
the integrity and correctness of actions performed by a network
node, that is, that the node is running a trusted, unmodified binary
inside an enclave.We demonstrate how, using our extracted key and
custom quoting enclave, an attacker can run a modified enclave and
fake proofs of storage, thus allowing them to claim rewards without
ever actually storing files.
Summary of Contributions. We contribute the following:
• We show howDDR4 bus interposition can be performed cheaply
using equipment available on electronic marketplaces (Section 4).
• Wedemonstratehowtoachieve control overSGXenclaves, forcing
enclave data to be visible to our interposition setup (Section 5).
• We breach SGX’s security guarantees by extracting an attestation
key from a Xeon server in a fully trusted status (Section 6).
• We showhow a compromised attestation key allows breaking con-
fidentiality of execution inside SGX enclaves by extracting secret
keys for phalaand secret confidential smart contracts (Section 7).
• Weforgeproofs of storage on the crustnetwork, thereby showing
how enclave breaches affect the integrity guarantees of applica-
tions that use SGX for enforcing execution correctness (Section 8).

Disclosure. Following the practice of coordinated vulnerability
disclosure, we have shared our findings with Intel, as well as the
security teams of the affected SGX deployments. Intel and all af-
fected deployments have acknowledged our findings and will make
statements simultaneously with the public release of this paper.

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

Ethics. Keeping with ethical research practices, we extracted the
attestation key only from our own local machine. Additionally, all
blockchain case studies and attack PoCs were performed either on
our own isolated local network setups or project testnets designated
for such testing purposes. This allowed us to carefully ensure that
no real user data, keys, or other sensitive material was ever accessed
or exposed, beyond our own created to verify our proof of concepts.

2 Background and RelatedWork

2.1 Intel Software Guard Extensions

Intel’s Software Guard eXtensions (SGX) extend the x86_64 instruc-
tion set with instructions to create trusted execution environments,
called enclaves, that support secure code execution. SGX aims to
prevent the inspection andmodification of both code and datawithin
enclaves, even in the presence of root-level adversaries, with full
control over the systems software stack. In addition, Intel SGX pro-
vides an attestation process that allows remote parties to ensure that
enclaves are running on genuine and trustworthy Intel hardware.
Enclave Identification. To identify enclaves, SGXmaintains amea-
surement of the enclave’s initial state (mrenclave) and the enclave
developer’s identity (mrsigner) for each enclave. The mrsigner
value is a cryptographic hash of the public RSA key that the enclave
developer used to sign the enclave. The mrenclave value represents
the enclave’s initial state and is a measurement of the enclave’s
contents (code and data) chosen by the developer.
Trusted Compute Base (TCB). The SGX TCB consists of the
trusted components that must operate correctly, and thus may not
be malicious or compromised, for SGX to operate securely. More
specifically, among these components are the CPU itself and its mi-
crocode, aswell as the CPU’s ProvisioningCertificate Key (PCK). For
software, SGX relies on the correctness of Intel-provided Provision-
ing and Quoting enclaves, which handle the machine’s attestation
key.Notably,other systemcomponents, suchas themachine’sDRAM
bus, BIOS, or even theDIMMmodules themselves, remain untrusted,
and thus are not part of SGX’s TCB.
Enclave Page Cache. A subsection of the physical address space,
named the Enclave Page Cache (EPC), is reserved for SGX enclave
memory. This section can only be occupied by enclave related pages
and is managed by the SGX driver in the Linux kernel.
Memory Encryption in Client SGX. Intel SGX client platforms
implementaMemoryEncryptionEngine (MEE) toguarantee thecon-
fidentiality, integrity and freshnessof SGXmemory [14].While confi-
dentiality is guaranteed through the use of AES encryption, theMEE
in Intel SGX client platforms employs Merkle trees, stored on-die,
to guarantee integrity. In addition, it uses a "tweaked" AES counter
mode to guarantee freshness, storing a counter for each cache line
and incrementing it on every write operation. Being part of every In-
tel platform from Skylake to CometLake (6th to 10th generation), the
now-deprecated client SGX implementation avoided the use of deter-
ministic encryption at the cost of limiting SGXmemory to 512 MB.
Memory Encryption in Scalable SGX. With SGX’s migration
from client to scalable server platforms, Intel has increased the size
of available SGXmemory up to 512GB per processor on high-end
CPUmodels. This was done by deploying a newmemory encryption
engine called Intel Total Memory Encryption (TME). More specif-
ically, TME is implemented in the DRAM controller and encrypts

the entire address space using AES-XTS with a key determined at
boot time [22], writing ciphertexts to memory instead of plaintext
data at a granularity of 128-bit blocks. Furthermore, AES-XTS for
TME includes a tweak function that incorporates the physical ad-
dress, guaranteeing that data written to different physical addresses
produce different ciphertexts. For the rest of this paper, we focus on
Scalable SGX, which is present in all Intel Xeon Scalable processors
starting from the 3rd generation (IceLake).

2.2 Remote Attestation

One of the compelling features of SGX is that an enclave can attest
to a remote verifying party that it is indeed running on genuine and
trustworthy Intel hardware, guaranteeing the confidentiality and
integrity of data inside it. This for example ensures that the remote
party can subsequently provision that enclave with secrets, with the
assurance that these secrets never leave. In this paper, we specifically
focus on the remote attestation process used by Intel’s Xeon Scalable
servers, called SGX Data Center Attestation Primitive (SGX DCAP).
Wenote that an earlier primitive (EnhancedPrivacy ID—EPID) origi-
nallymeant for client platformshasbeen recentlydeprecatedby Intel
[25].We now proceed to overview the DCAP attestationmechanism.
Local Attestation. When an enclave wants to prove (or attest)
to a remote verifier, it first needs to prove its own identity to the
Quoting Enclave (QE) through a process called local attestation. First,
the proving enclave issues the ereport instruction to generate a re-
port containing the mrenclave and mrsigner values of the proving
enclave. This report is then signed using a key that is only accessible
to the QE. Finally, the proving enclave passes the report to the QE,
which proceeds with the remote attestation process.
Remote Attestation. Upon completing local attestation, the QE
uses the data from the report to produce and sign a "Quote", which
is used to authenticate the proving enclave to remote parties. More
specifically, Intel’s QE issues the egetkey instruction to request the
sealing key from which it derives a repeatable signing key that is
unknown to Intel. While any QE can use its own preferred methods
and algorithms to generate their own attestation key with which to
sign the quote, the Intel-provided QE uses IETF RFC 6090 compliant
256-bit ECDSA signatures over the NIST p-256 curve [39, 60].
Provisioning Certificates. To ensure that an arbitrary key pair
cannot be used to sign and verify quotes, the QE provides the public
attestation key to Intel’s PCE. The PCEderives a device-specific PCK,
which is also a 256-bit ECDSA key used to sign the certificate iden-
tifying the QE and its attestation key. Intel additionally publishes
certificates and certificate revocation lists for the PCKs in all genuine
Intel platforms, ensuring a complete signature chain from the DCAP
quotes to the Intel CertificateAuthority. Using these, anyone can ver-
ify that the resulting quote originates from a genuine Intel platform.

2.3 Attacks on TEEs

SGX. While attacks such as microarchitectural data sampling
(MDS) [5, 61, 66] demonstrate how an attacker can exfiltrate data
from enclaves, Foreshadow, CacheOut and AEPICLeak [3, 65, 67]
show various ways of how attackers can extract SGX attestation
keys. Crosstalk [59] demonstrates how to extract the ECDSA nonces
from an SGX enclave using IPP crypto’s ECDSA implementation,
and how to recover the ECDSA key from these nonces. In general,

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

SGX.Fail [68] provides an overviewof SGXattacks and demonstrates
how these can be used to attack applications. However, all of these
works focus on (now deprecated) Intel SGX platforms implementing
EPID, rather than Xeon Scalable platforms implementing DCAP.
AMDSEV. While using a similar 128-bit AES-XEXmemory encryp-
tion, unlike SGX, AMD SEV does not prevent the hypervisor from
issuingmemory accesses to read enclave ciphertexts. Exploiting this,
Cipherleaks [36] breaks AMD SEV-SNP by observing ciphertexts
corresponding to the encrypted VM Save Area (VMSA), allowing
them to breach the constant-time ECDSA and RSA implementations
of OpenSSL. Li et al. [35] extend Cipherleaks’ result that ciphertext
side-channel attacks can be applied to allmemory pages, rather than
just the VMSA. Finally, CipherSteal [74] and HyperTheft [73] show
that attackers can exploit ciphertext side channels to recover input
data and weights from TEE-shielded neural networks respectively.
HardwareAttacks. DRAMAdemonstrates that byobserving the la-
tencyofDRAMaccesses, anattacker can inferwhether thevictimhas
recently accessed the same row [57]. Attacking older client-oriented
Core series CPUs, Membuster [34] shows how an attacker can use
a professional $170,000 memory interposition setup to extract fine-
grained memory access patterns of hardware enclaves. However,
due to the cryptographic protections used by older SGX systems,
Membuster is unable to fully breach SGX and recover the attestation
key. Next, Buhren et al. [4] present a voltage glitching attack where
adversaries can execute customSEVfirmwareon theAMD-SP, allow-
ing them to decrypt a VM’s memory as well as extract endorsement
keys while VoltPillager [6] demonstrates a similar attack where the
attacker can control the CPU core’s voltage to mount fault-injection
attacks to breach the confidentiality and integrity of SGX enclaves.
Finally, BadRAM [12] enables memory aliasing attacks by modify-
ing the DIMM’s SPD data, sidestepping SEV’s aliasing checks. This
results in aDIMMwhere two physical addresses aremapped into the
same memory cells, thereby allowing [12] to break SEV attestation
via replaying launch token digests.

2.4 Caches

To overcome the increasing performance gap between CPUs and
memory, processors employ small buffers called caches. Caches ex-
ploit localitybystoringrecentlyandfrequentlyuseddatacloser to the
CPU to hide the memory’s access latency. Modern Intel processors
implement a hierarchyof caches,with a shared last-level cache (LLC).
CacheOrganization. In a typical Intel CPU, the caching hierarchy
consists of three levels. First, each core has two L1 caches, one for
data and one for instructions. Next, the core also has a unified L2
cache. Additionally, the CPU has a last level cache (LLC), which is
shared between all of the cores. When accessing memory, the pro-
cessor first checks if the data is in L1. If not, the search continues
down the hierarchy. Caches consist of multiple cache sets that each
host a number of cache lines orways. To provide Quality of Service,
some Intel processors feature Intel Cache Allocation Technology
(CAT) [19], which can be used to allocate a different number of ways
to each CPU core, and consequently to each guest virtual machine,
to prevent trashing, therefore improving performance.
Cache Attacks. Timing access to memory can reveal informa-
tion on the status of the cache, giving rise to side-channel attacks,
which extract information by monitoring the cache state. Previous

works proposed many different techniques to perform such attacks,
most notably Flush+Reload attacks [15, 72] and Prime+Probe
attacks [27, 32, 37, 55, 56].

2.5 Memory

Memory Organization. The memory system is organized into
multiple channels, each potentially with multiple DIMMs. A single
DIMM consists of a number of RAM chips, organized into ranks,
banks, rows and columns, which uniquely define the address of each
byte available within the DIMM.Within a chip, each die contains an
array of capacitors, with each capacitor corresponding to a single bit.
In the case where the system contains multiple DIMMs, DIMMs on
different channels can be accessed in parallel, whilemodules sharing
a channel must be accessed sequentially. Finally, Intel CPUs use pro-
prietary addressing functions tomap the physical address space onto
DRAM locations,with priorworks [28, 57] reverse engineering these
functions for common processors up to 4 DIMM configurations.
DDR4Memory Bus Overview. Each DDR4 DIMM contains 288
pins, which are used by the CPU’smemory controller to issue DIMM
commands as well as send and receive data read and written from
the system’s physical memory. From these pins, DDR4 ECC-RAM
uses 24 pins for address and commands, as well as 72 bits for data
transfer. This includes 64 bits of data and 8 bits of ECC encoding.
Data is sent after a certain amount of clock cycles, known as the
DIMM’s CAS value. See [30] for additional details.
Memory Bus Speed. The operations of the DRAM bus are gov-
erned by a clock signal generated by the CPU’s memory controller
for all modules present in the system. DIMM commands take one
clock cycle, and are only transmitted on rising clock edges. On DDR
(double data rate) memory, each data burst also takes a single cycle,
but with bursts being transmitted on both rising and falling clock
edges. This effectively doubles the DIMM’s data transferring speed,
while allowing for slower (and thus more reliable) transmission of
DIMM commands. Finally, the DDR4 JEDEC standardizes speeds of
1600MT/s (mega transfers per second) til 3200MT/s, using 800–1600
MHz clock frequencies, respectively [31].
Serial Presence Detect (SPD). The SPD is an additional chip
present onDIMMmodules,which contains themodule configuration
data written to non-volatile memory. This data includes values such
as the DIMM’s memory size and supported speeds (among others).
Communication with the SPD chip is done via two dedicated pins,
and is implemented via the 𝐼2𝐶 protocol [29]. During boot, the SPD
of all DIMMs present in the system is read by the BIOS, and is used to
configure the system’s memory controller. Finally, the DIMM’s SPD
data is programmable either via BIOS or via external SPD program-
ming boards, and is often used by overclockers to speed up memory
access times by forcing the DIMM into higher speed regimes.

3 Threat Model and Target Setup

Adversarial Capabilities. We assume a threat model where the
attacker has physical and supervisor access to the target machine.
While SGXwas not designed to protect against physical attacks, in
Sections 7 and 8 and Appendix B we instantiate this threat model
by examining realistic Web3 SGX deployments.

More specifically, we assume that the adversary is capable of run-
ning a custommodified kernel, manipulating memory management

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

in an adversarial manner, and changing page permissions. For phys-
ical access, we assume capabilities of a trained computer technician,
capable of modifying and installing parts into the target machine.
However, we do not allow for a more advanced adversarial capabil-
ities such as silicon-level circuit editing (e.g., using a focused ion
beammachine). Finally, we assume a modest attack budget of under
$1000 USD, putting our work within reach of most hobbyists.
TargetMachine Configuration. For the target machine, we use a
computer equipped with an Intel Xeon Silver 4310T (Ice Lake) CPU
and a Supermicro X12SPL-F motherboard. Next, as enabling SGX
requires all memory controller DIMM slots to be populated, our
machine was equipped with eight 16 GB sticks of DDR4 RAM. For
software, ourmachine is using Ubuntu 24.04.2 LTS (noble), with
kernel version 6.10.6. Finally, we used BIOS version 2.2 containing
CPU microcode version 0xd0003f5, allowing our machine to pass
DCAP attestation in a fully trusted status.

4 Building a Cheap DRAM Interposition Setup

Wenow describe the construction of our hardware acquisition setup,
as well as its capabilities to observe traffic on the DRAM bus.

4.1 Slowing Down Bus Transactions

The cost of data acquisition equipment is often governed by three
main factors: the number of input channels, the amount of memory
available to store acquired data, and the maximum supported acqui-
sition speed. While our attack does not require a large amount of
memory as we are only interested in observing individual transac-
tions at a time, slowing down the system’s bus speed will enable us
to use simpler and readily available acquisition hardware. To that
aim, in this section we describe our setup for modifying the DIMM’s
SPD parameters, allowing us to produce slow operating DIMMs.
Experimental Setup. While prior work [12] demonstrates how to
construct an SPDwriter for as low as $10, we instead elected to use a
pre-built unbranded SPDwriter, available on e-commerce websites
for $75. We then used the supplied software to modify the SPD of
a Micron MTA18ASF2G72PZ-2G3B1QG 16 GB DIMM rated for 2400
MT/s, experimenting with different speed settings. See Figure 2. Fi-
nally, while [12] creates memory aliasing by changing the DIMM’s
SPD to indicate a larger capacity, our work uses the DIMM’s SPD to
report lower supported speeds (thus slowing downbus transactions),
leaving the DIMM’s reported capacity unchanged.

Figure 2: SPDWriter formodifying DIMM SPD values

Results. While the JEDEC standardizes DDR4 speeds in the range
of 1600–3200 MT/s [31], using 800–1600 MHz clock frequencies, we
were unable to find any DDR4 server ECC RDIMMs operating below
2133MT/s (1066 MHz clock). However, by modifying our DIMM’s
SPD values, we have empirically observed that our systemwill still
boot evenwhen the DIMM’s speed is set to 1333MT/s. Moreover, we

have observed that installing a single such slowDIMMhas the effect
of slowing down all the DIMMs in the system to 1333 MT/s, presum-
ablyas theCPU’smemorycontrolleronlygeneratesa single clocksig-
nal for all theDIMMspresent in the system.Next, as theDIMM’s SPD
parametersarenotpartofSGX’sTCB,using thismethodwewereable
to produce a fully trusted DDR4 system which only uses a 667 MHz
clock for its memory bus, greatly simplifying our acquisition setup.

4.2 Building a DDR4 Bus Interposition Setup

Having obtained a slow running DIMM, we now build a bus interpo-
sition probe to physically connect our logic analyzer to the system’s
DRAMbus.Whilepriorwork [12, 34] argues that suchprobesare rare
and expensive, requiring tens of thousands of dollars, we show how
such a probe can be constructed by hobbyists, costing under $1000.
Starting Point: A DIMM Slot Protector. Our starting point is
a DDR4 DIMM riser board, which is a simple pass-through PCB
consisting of a female DDR4 DIMM socket and an edge connector,
see Figure 3(left), which provides easy physical access to theDIMM’s
traces. With the DIMM’s traces accessible, ideally the most basic
construction of aDDR4 interposerwould be to simply attach an addi-
tionalwire to each such trace, connecting the other side of thewire to
the logic analyzer input. However, such a design forces the system to
drive signal to both the DIMM and the wires leading to the logic ana-
lyzer. This in turn overloads the driver built into theCPU, preventing
the system from booting (in some cases permanently, as we empir-
ically discovered, by damaging the CPU’s ability to detect RAM).

Figure 3: (left) DDR4 riser board. (right) Probe isolation network schematic

Step2:DesigningaProbe IsolationNetwork. Aiming tomitigate
this issue, we observed the construction of Keysight’s SoftTouch
series probes, intended for high frequency buses. Here, we discover
that each of the probe’s channels contains 3 components: an inductor
connected in series to a capacitor and a resistor, with the last two
components connected in parallel, see Figure 3(right). A particu-
larly helpful example of such construction was a Keysight (formally
known as Agilent) N4252A Transition Probe Adapter, which con-
tains 102 channels, all outfitted with such a design, and available on
a second hand marketplace for around $40 at the time of purchase.
While documentation about the N4252A is scarce, writing on our
probe suggests it was used for debugging Intel’s QuickPath Intercon-
nect protocol, used by Intel between 2008 and 2017 [69]. Moreover,
while using very different pinouts, QPI is very similar to DDR4mem-
ory from an analog signal integrity perspective, with both protocols
using both rising and falling clock edges, as well as a 3.2 GHz clock.
Step 3:DDR4 InterposerConstruction. To build ourDDR4 inter-
position probe, we used a hot air gun to heat up the N4252A’s PCB,
manually collecting the stacked pairs of capacitors and resistors
using tweezers. Using a soldering iron, we then placed a capacitor-
resistorpaironeverysignal carrying trace in theDIMMslotprotector,
allowing us to isolate the logic analyzer hardware from the target

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

Figure 4: (left) Homemade DDR4 interposer. (right) Zoomed-in view on the

probe isolation networks

machine. See Figure 4(left). This in turn allowed our machine to
reliably boot, without reporting any memory reliability issues.
Step 4: Logic Analyzer Hookup. The final step is to connect the
other side of the probe isolation network to the analyzer. To that aim,
we used two Keysight N4834 SoftTouch probes ($22 each, second-
hand),maintaining their top 90-pin pods and cutting off their bottom
SoftTouch connector. We then soldered the signal wires for each
channeldirectly to the terminalsof thecapacitor-resistorpairsplaced
earlier on the slot protector’s PCB. This resulted in a reliable logic an-
alyzer connection to the system’s DDR4 bus, allowing us to observe
signals at fullDDR4 rates of 3200MT/swithout the targetmachine re-
portingmemory reliability errors. See Figure 4(right). Moreover, our
probe uses standard 90-pin Keysight logic analyzer pods, allowing
it to be connected to a large variety of Keysight equipment.
Step 5: Logic Analyzer Selection. With our probe successfully
constructed, our next step is to obtain a suitable logic analyzer ca-
pable of tracking signals on the DDR4 bus. Here, we use our ability
to slow the system’s memory to 1333 MT/s (or 667MHz) from Sec-
tion 4.1 to our advantage, allowing us to use highly obsolete (and
thus cheap) Keysight acquisition hardware. More specifically, we
used five Agilent 16950B acquisition cards, each featuring 4MB sam-
ple storage RAM, and capable of stateful acquisition of 667MHz
signals by tracking the system’s clock. The cards were placed inside
a Keysight 16902A logic analyzer chassis, equipped with a Pentium
III 1GHz single core CPU and 512MB of system RAM. Purchased for
$550 from a secondhandmarketplace (including cards), we upgraded
our chassis to useWindows XP SP3, replaced the original spinning
drive with an SSD ($30) and installed Agilent’s Logic and Protocol
Analyzer application version 5.9, the latest supporting this gener-
ation. See Figure 1 for a picture of our end-to-end acquisition setup
and Table 1 for a bill of materials and cost breakdown.

Item Qty. Total Cost

SPDwriter 1 $70
DDR4 Riser 1 $15
Agilent N4252A Probe 1 $40
Keysight N4834 Probe 2 $44
Agilent 16902A Chassis +

Five Agilent 16950BModules
1 $550

256GB Sata SSD 1 $30
Sata to IDE Adapter 1 $8
Lab supplies (solder, flux, etc.) 1 $100
Total $857

Table 1: Bill of Materials for our DDR4 Bus Interposition Setup

4.3 Observing Bus Transactions

Figure 5(top) shows an example of acquired read transactions, as cap-
tured by our logic analyzer, which is then parsed into a listing in Fig-
ure5(bottom).Ascanbeseen, the logicanalyzerallowsus toobservea
significant amount of information about the CPU’s memory activity,
including memory commands, addresses, as well as read/write data.

Figure 5: (top)WaveformView of Acquisition Data and (bottom) Parsed Listing

View of Acquisition Data

5 Controlling EnclaveMemory Layouts

Having obtained the capability of observing activity on the DRAM
bus of a single DIMM, we recall that to enable SGX, Intel requires
that all channels for all memory controllers present in the system be
populated [21]. Overall, we must configure our system to use eight
DIMMs, each being 16 GB. However, as our logic analyzer setup is
able to observe data on only a single DDR4 DIMM, we need to over-
come several challenges in order to ensure that the enclave’smemory
traffic is indeed directed to theDIMMconnected to the logic analyzer.
C1 First,wemust be able tomap systemphysical addresses toDRAM

addresses and their corresponding DIMMs.
C2 Next, wemust ensure that the enclave page of interest is mapped

to the DIMM connected to the logic analyzer.
C3 Finally, we must control the execution of the target enclave,

ensuring its ciphertexts are observable on the logic analyzer.

5.1 Reverse Engineering DRAMAddressing

In order to map physical addresses to their corresponding DRAM
addresses we must recover the DRAM addressing function. Prior
works [28, 57] rely on the row-buffer conflict side channel to detect
physical addresses mapped to the same memory bank, and based on
that information solve for the addressing function. However, as the
addressing functions growmore complex and thenumber ofmemory
channels and DIMMs increases, two separate problems emerge: the
row buffer side channel becomes noisier, and deliberately inducing

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

these conflicts becomes much harder. Rather than using row buffer
conflicts, we instead develop an approach using Intel’s Memory Ad-
dress Translation (ADXL) ACPI methods [20]. While this has the
benefit of recovering DRAM addressing functions without the need
to induce row buffer conflicts or deal with system noise, this method
is only applicable on platforms that support ADXL (e.g., Intel Xeon
Scalable processors).
Memory Address Translation. Recent BIOSes supporting Intel
CPUs provide an ACPI device-specific method (DSM) for decoding
physical addresses to DRAM addresses. Intel BIOS reference code
contains address translation functions, but these are not directly
accessible by the OS [20]. Instead, the DSM interface allows the OS
to query decoding of physical addresses and receive their DRAM
address components. Finally, the Linux kernel has implemented
an interface for accessing ADXLmethods, which is normally only
triggered when decoding memory error information [38].
Reverse-Engineering using ADXL Feedback. To reverse engi-
neer the machine’s DRAM address functions using feedback from
the ADXL mechanism we implemented a simple kernel driver di-
rectly exposing this interface to userspace. Next, using the ADXL
methods, we have the ability to decode specific physical addresses
and observe information on theirDRAMaddress (memory controller
ID, channel ID, bank group and address, row address), which are
required to precisely determine an address’s DRAM location. With
this primitive, we recover DRAM addressing functions as follows.

We start with an arbitrary valid baseAddr, and decode it into its
components. Then, for each set of 𝑛 bits 𝑆 = {𝑖1 ...𝑖𝑛}, we decode the
physical addressbaseAddr+2𝑖1+ ...+2𝑖𝑛 and compare their resulting
DRAM address components. Any differences in the DRAM address-
ing must be due to the differences in one or more 𝑖𝑥 , allowing us to
include 𝑆 in the set of bits that affect this part of the DRAM address.
For example, if the 𝑗th bit of the bank group is different between the
two addresses, then some 𝑖𝑥 is a bit used to calculate 𝑗 . At the end
we are left with a set of physical address bits that affect each bit of
the DRAM address. Next, we calculate which of these relationships
are linear via Gaussian elimination. For those that are linear, we
then directly assign physical address bits to DRAM address bits. For
the non-linear relationships, we proceed to populate a truth table
using each physical address bit as inputs and each affected DRAM
address bit as outputs. Finally, weminimize the truth table, resulting
in functions that can be used to derive the DRAM address bits.

See Figure 6 for an example of a recovered DIMM selection func-
tion, as well as Appendix A for additional functions recovered via
our method.

Row11←¬𝑏31∧(𝑏32∨𝑏33∨𝑏34∨𝑏35∨𝑏36)
Figure 6: DIMM Selection Functions on our SGXMachine

5.2 Pinning SGXMemory

Now that we can translate system addresses to their corresponding
DRAM addresses, we need to ensure that we can map our target
enclave page of interest to theDIMM that is attached to the logic ana-
lyzer.While previous works have used the ewb (EnclaveWrite-Back)
and eldu (Enclave Load) leaf instructions to swap out enclave pages
and reload those [3, 65, 67, 68], we instead resort tomodifying Intel’s
SGX driver to provide a pinning mechanism. More specifically, we
use theaddress translation functions recovered inSection5.1 todeter-
mine which EPC pages map to the single DIMMwhose traffic can be
inspected by our logic analyzer.We then reserve these pages byfilter-
ing them from the driver’s internal linked list structure used to track
free pages. Although theOS cannot directly access EPCpages, it is re-
sponsible for allocating themtodifferent enclaves runningon the sys-
tem.This is not considered a security risk as the processor-controlled
EPCMap ensures valid mappings by the OS between EPC pages and
enclaves, preventing aliasing attacks by the OS. In addition, wemod-
ify the flag variable of these pages to ensure that the driver’s garbage
collection and sanitization processes ignore these reserved pages.
When allocating memory, the SGXmemory allocator provided as
partof thedriver simply inspectswhether the requestoriginates from
oneof our target enclaves andwhether the virtual address is included
in the list of of targeted addresses, deciding whether to back the re-
quest using a physical page located on an interposed DIMM or not.

5.3 Forcing DRAMTraffic

With the ability to pin the target enclavepageof interest to theDIMM
attached to the logic analyzer, the final challenge is to ensure the
enclave’s memory accesses miss the CPU’s cache, allowing us to
observe the ciphertexts corresponding to the enclave’s data via the
logic analyzer. To overcome this hurdle, we need to be able to control
the enclave’s execution flow and then evict the enclave’s data from
the cache such that it is observable on the memory bus.

Enclave Control Channel. To that aim, our first step is to obtain
the ability to halt the enclave at points of interest. As Intel SGX pre-
vents debugging production enclaves with tools such as gdb, we rely
on controlled-channel attacks [71] to control the execution flow of
production enclaves. More specifically, we use mprotect to change
the protection of the target enclave page of interest, such that access-
ing it causes a segmentation fault. Although the OS cannot directly
access EPC pages, mprotect is able to modify the permissions of
pages in the OS-controlled page table. We can then rely on ptrace
to temporarily change the protection of our victim’s pages, halt the
enclave as it triggers a segmentation fault and then revert the protec-
tion to resume execution. This allows us to follow the execution of
the enclave at a page granularity until we reach our points of interest.

OvercomingCaching. As theCPUkeeps the enclave’s data cached
rather than directly sending it out to DRAM, the resulting cipher-
texts are not immediately visible on the logic analyzer. Thus, to
be able to observe the ciphertexts on the memory bus, we have to
ensure that the CPU evicts the relevant cachelines from the cache.
While it is normally possible to mark specific pages as uncacheable,
the Processor Reserved Memory Range Registers (PRMRRs) control
the cacheability of the EPC pages [9]. As we cannot override this
cacheability, we can neithermark individual EPCpages or individual

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

pages as uncacheable. Therefore we have to resort to other means
of evicting the data of interest from the CPU’s caches.

As discussed in Section 2, manyworks have demonstrated sophis-
ticated cache attacks such as Flush+Reload [15, 72] and Prime+
Probe [27, 32, 37, 55, 56]. However, in this case we note the logic
analyzer’s triggering functionality, which (among others) allows
the logic analyzer to begin acquisition only when a certain DIMM
location is accessed. Thus,we can simply resort to trashing the entire
cache, relying on the logic analyzer to initiate acquisition for specific
addresses. Implementing this, we run a process on a siblingCPU core
that traverses an array that is twice the size of the LLC, thus evicting
the victim’s data from the LLC. Finally, to reduce noise from irrel-
evant data, and to more easily evict the victim’s cache lines, we rely
on Intel CAT to minimize the number of cache ways that the victim
process can use, thus reducing the amount of irrelevant DRAM data.

6 Attacking SGX Encryption

As discussed in Section 2, Intel server platforms implement SGX on
top of TME, which encrypts the entire address space using AES-XTS
withakeydeterminedatboot time [22]. Encryption isdonebyhaving
the memory controller write ciphertexts to memory instead of plain-
text data, at a granularity of 128-bit blocks. Furthermore, AES-XTS in
TME includes a tweak function incorporating the physical address.

6.1 Verifying Determinism

To verify Intel’s use of deterministic encryption as well as to em-
pirically observe its behavior, we selected a fixed virtual address
and a physical address located in the Enclave Page Cache (EPC) that
would be mapped to the DIMM interposed by our logic analyzer.
Within an enclave, as shown in Listing 1, we executed a sequence of
memory accesses involving writes after reads. After the second read,
we modified the data by incrementing it by one and wrote it back
to memory. Then, following the third read, we decremented the data
by one, restoring it to its original value before the final write.
ObservingDeterminism. Figure 7 below shows (a filtered) output
fromour logic analyzer. As can be seen, the ciphertext datawritten to
memory is indeed deterministic, with the values of the first and third
memory reads being the same. Meanwhile, the value in the second
read is completely different, corresponding with an encryption of
a different data value on our program’s second iteration.
Behavior on Virtual Address. To examine the effects of the vir-
tual address on SGX’s encryption, we prepared two identical arrays
inside enclaves located at different virtual addresses as illustrated
in Figure 8(left). We adjusted the page offsets so that both arrays
would appear in theDIMMconnected to the logic analyzer. Using our
modified SGX driver, we mapped these arrays to the same physical

Listing 1 Enclave code performing a pattern of memory accesses
to understand deterministic encryption behavior
1 sgx_ecall_access_memory(usize_t offset, uint64_t *data) {
2 uint64_t mod[3] = { 0, 1, (uint64_t)-1 };
3 for (i = 0; i < 3; i++) {
4 *data = read_uncached(enclave_memory + offset);
5 *data += mod[i];
6 write_uncached(enclave_memory + offset, *data);
7 }
8 }

Figure 7: Observing SGX’s deterministic XTS encryption

address in EPC and observed that the encrypted data on the bus was
identical for both. This confirmed that the virtual address does not
contribute any tweak functionality to the encryption.
Behavior on Physical Address. Next, to check whether the phys-
ical address has an effect on encryption, we chose two different
physical addresses (both in EPC) mapped to the DIMM connected
to the logic analyzer. Using our modified SGX driver, we mapped
two identical arrays inside enclaves to these addresses, see Figure 8
(right), and observed that the encrypted data on the buswas different.
This confirms that there is a physical address tweak for memory
encryption and identical data only varies in physical memory if the
physical address is different.

Figure 8: Encryption behavior of different enclaves with identical data to same

(left) and different (right) physical address.

6.2 Attacking SGXAttestation

Having empirically confirmed Intel’s use of deterministic XTS en-
cryption for enclave memory, in this section we proceed to outline
the necessary details of Intel’s implementation of DCAP attestation,
with key extraction attacks presented in Section 6.3.
DCAP Signature Chain. Before provisioning machines with
secrets, clients must first verify that the requester is the intended
enclave running in production SGX enclave mode on a machine
in a fully trusted attestation status. To accomplish this, enclaves
go through a remote attestation process. More specifically, a client
requests a quote, which is a report of the enclave state signed by a
Quoting Enclave (QE). The quote contains the signed enclave report,
a signed report of the QE, and relevant certificates to verify the sig-
natures. The QE is signed by a Provisioning Certification Enclave.
This signature chain ends with a signature made by Intel’s private
key. Clients can verify the quote by verifying the signature chain.
See Section 2.2 for a more extended discussion.

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

Elliptic-Curve Digital Signature Algorithm (ECDSA). The
signature scheme used in DCAP is ECDSA over curve p-256. Given a
generator𝐺 of a group of order𝑛 over p-256, key generation consists
of generating a random integer 1≤𝑑 ≤𝑛−1 and computing𝑄 = [𝑑]𝐺
using a scalar by point multiplication operation. Signing a message
𝑚 is done by first hashing𝑚 and subsequently converting the first
⌈𝑙𝑜𝑔2𝑛⌉ bits into an integer 𝑧. Next, a random nonce 𝑘 ∈ {1,𝑛−1} is
generated and multiplied with𝐺 using scalar by point multiplica-
tion, resulting in (𝑥,𝑦) = [𝑘]𝐺 . The signature (𝑟,𝑠) is computed by
setting 𝑟 = 𝑥 mod 𝑛 and 𝑠 =𝑘−1 (𝑧+𝑟𝑑) mod 𝑛. Finally, verifying a
signature (𝑟,𝑠) on𝑚 is done by computing 𝑧 as above, computing
𝑤 = 𝑠−1 mod 𝑛, 𝑢 = 𝑧𝑤 mod 𝑛, 𝑣 = 𝑟𝑤 mod 𝑛, (𝑥,𝑦) = [𝑢]𝐺 + [𝑣]𝑄
and then checking that 𝑥 ≡𝑟 (mod 𝑛).
Scalar by Point Multiplication. While other leakage sources
might exist, we focus on the scalar multiplication as implemented by
the Intel IPP library, used during SGXDCAP attestation. Algorithm1
is (simplified) pseudocode of IPP’s scalar by point multiplication
routine. Here, the nonce𝑘 is converted into a series of booth-recoded
digits 𝑘0,··· ,𝑘𝑛 , with each −16 ≤ 𝑘𝑖 ≤ 16. Given a group generator
𝐺 , in lines 1-4, the algorithm constructs a pre-computation table𝑄 ,
where each𝑄 [𝑖]= [𝑖] ·𝐺 , for 𝑖 =0,...,16. Next, in line 5, Algorithm 1
initializes an accumulator𝐴, setting𝐴 to be [𝑘𝑛]𝐺 . Next, for each
booth-recoded digit 𝑘𝑖 of 𝑘 , the accumulator is multiplied by 25 and
the value of [|𝑘𝑖 |]𝐺 is stored in a temporary variable𝐵, beingnegated
in case 𝑘𝑖 is negative (line 9). The value of 𝐵 (which is now equal
to [𝑘𝑖]𝐺) is then added to the accumulator𝐴 (line 10), allowing the
algorithm to proceed to handling the next nonce digit. Finally, Algo-
rithm 1 returns𝐴 once all digits of𝑘 have been processed. Inspecting
IPP’s implementation, we find that all memory accesses and control
flow operations appear to be performed in constant time, without
any immediate microarchitectural side channel weaknesses.

Algorithm 1 Simplified representation of scalar by point multipli-
cation in Intel’s IPP library
Input: A scalar 𝑘 where 𝑘0 ...𝑘𝑛 are booth-recoded digits of 𝑘 with

each −16≤𝑘𝑖 ≤ 16 and a group generator𝐺 .
1: 𝑄 [0]=0
2: 𝑄 [1]=𝐺
3: for 𝑖 =2 to 16 do
4: 𝑄 [𝑖] =𝑄 [𝑖−1]+𝐺
5: 𝐴=𝑄 [𝑘𝑛] ⊲ done in constant-time
6: for 𝑖 =𝑛−1 to 0 do
7: 𝐴=25𝐴 ⊲ using 5 point doubling operations
8: 𝐵=𝑄 [|𝑘𝑖 |] ⊲ done in constant-time
9: if 𝑘𝑖 <0 then 𝐵=−𝐵 ⊲ done in constant-time
10: 𝐴=𝐴+𝐵
11: return𝐴

6.3 Recovering DCAPAttestation Keys

To recover the machine’s ECDSA attestation key 𝑑 , it is sufficient
to recover the nonce 𝑘 used during a scalar by point multiplication
operation during a single attestation attempt. With the nonce 𝑘 as
well as the signature (𝑟,𝑠) on a message𝑚 in hand, it is possible to
obtain 𝑑 by solving 𝑠 =𝑘−1 (𝑧+𝑟𝑑) mod 𝑛, see Section 6.2.

ConstructingaCiphertextDictionary. To recover𝑘 , wefirst con-
struct a ciphertext dictionary mapping the values of [𝑘𝑖]𝐺 to their
corresponding ciphertexts, for all possible values of 𝑘𝑖 . Moreover,
as the ciphertexts produced by SGX are address dependent, we fix
a specific physical address addr, which is also mapped to the DIMM
interposed by our logic analyzer. Noting that 𝑘𝑖 ranges from −16
to 16, we created a simple dictionary building (DB) enclave, which
computes [𝑡]𝐺 for all possible 33 values. Our enclave then writes
each [𝑡]𝐺 to addr, forcing the enclave to use addr via the pinning
mechanism described in Section 5.2. We then flush addr out of the
machine’s cache, thereby inducing a DRAMwrite transaction. As
addr is mapped to a DIMM interposed by our logic analyzer, we are
able to observe the ciphertext 𝑐𝑡 corresponding to [𝑡]𝐺 , allowing our
enclave to proceed to the next value of 𝑡 . Overall, using this method
we are able to obtain 33 ciphertexts 𝑐−16,···,𝑐16, corresponding to all
possible values of [𝑡]𝐺 as written to memory to address addr.
Nonce Recovery. Having constructed our ciphertext dictionary,
wenowproceed to recover anECDSAnonce𝑘 used to signa report𝑚,
resulting in a quote containing an ECDSA signature. To that aim, we
launch themachine’s quotingenclave inproductionmode, triggering
an attestation request via Intel’s sample DCAP attestation program
[24]. Using the mechanism from Section 5.2, we ensure that the vari-
able 𝐵 from line 8 of Algorithm 1 lands on the physical address addr
used to generate the ciphertext dictionary.Next,weuse the approach
from Section 5.3 to halt the quoting enclave’s (QE) scalar by point
multiplication operation at line 10 of Algorithm 1, namely at the end
of each iteration of themainmultiplication loop. By trashing thema-
chine’s cache at this point,we ensure that thememory access reading
the value of 𝐵misses the caching hierarchy, triggering a DRAM read
operation. Since addr is mapped to a DIMM interposed by our logic
analyzer, we are able to observe the ciphertext corresponding to the
value of 𝐵 for each iteration of the main loop of Algorithm 1.

With the encrypted values of 𝐵 in hand, we note that Intel’s SGX
implementation uses the same memory encryption key for all en-
claves present in the system. In particular, our DB enclave uses the
same TMEmemory encryption key as Intel’s own QE. Thus, as both
the QE and our DB enclave accessed the same physical address addr,
we are able to use the dictionary constructed earlier, andmap the en-
crypted values of 𝐵 to their corresponding values of [𝑘𝑖]𝐺 . With the
booth-recoded digits 𝑘0,···,𝑘𝑛 of 𝑘 in hand, we are able to completely
recover the nonce𝑘 used for producing the ECDSA signature during
the machine’s attestation process.
AttestationKeyExtraction. Having obtained the ECDSA signing
nonce, our next step is to recover the machine’s attestation key. To
that aim, we notice that unlike the attestation flow used on prior
SGX implementations running on client machines [11], the SGX
DCAP attestation flow does not encrypt the attestation quote before
sending it to the DCAP attestation server. Thus, by observing the
signed quote, we are able to obtain the values 𝑟 and 𝑠 which form the
quote’s ECDSA signature. Finally, we obtain the key 𝑑 by solving
𝑠 =𝑘−1 (𝑧+𝑟𝑑) mod 𝑛, where 𝑧 is a hash of the machine’s quote.
Experimental Results. To obtain an SGX attestation key from a
machine in a fully trusted status, we executed Intel’s sample DCAP
attestation program on our target machine from Section 3. Trigger-
ing a DCAP attestation, we used the above-described approach to
successfully recover 51 out 52 booth-recoded digits 𝑘0,···,𝑘𝑛 of 𝑘 . As
the first booth-digit𝑘𝑛 of𝑘 is not accessed during themain loop (line

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

6) of Algorithm 1, we have iterated over all possible 33 options and
attempted ECDSA key recovery for each, until the correct key was
found. Overall, our nonce extract phase took 50 seconds per nonce
digit (∼ 45minutes total), with themain bottleneck being the slow IO
speed of our Pentium III based logic analyzer. The subsequent key ex-
traction stepwas completed using anMacBookAir (AppleM1, 16GB
RAM), taking about 16.44milliseconds. To the best of our knowledge,
this is the first end-to-end key extraction attack on an SGX system
using DCAP attestation from a machine in a fully trusted status.

7 Breaching Confidentiality of Enclave Data

Equipped with an attestation key from a machine in trusted status,
we proceed to investigate how real world SGX deployments fail in
the presence of such key compromise. Here, we noticed that numer-
ous systems which rely on SGX for confidentiality fail in a similar
manner, allowing attackers equippedwith an attestation key to forge
quotes and extract data at will. We focus here on two primary SGX
deployments, the phala network and secret network, and due to
space constraints discuss integriTEE in Appendix B.

Both phala and secret provide confidential smart contract ex-
ecution in SGX enclaves. Smart contracts are stateful programs in
blockchain systems with which users can interact. By only encrypt-
ing and decrypting data with keys available inside enclaves, these
networks ensure that only the enclave should have access to the
contents of contracts and data they operate on. However, we find a
compromised attestation key allows for breaking this confidentiality
of execution. We show how an attacker can extract multiple secret
keys used for encryption from the networks by modifying enclaves
with a forged quote. With these keys, an attacker can decrypt all
confidential transactions on the networks without being detected.

Finally, we also demonstrate how even without attestation keys,
one can directly extract secrets from within enclaves and thus break
confidentiality.We show this by directly recovering a private ECDSA
signing key from an enclave, without mounting attacks on the ma-
chine’s attestation process.

7.1 phala Overview

phala provides confidential computation on top of a blockchain.
phalauserscanrequestexecutionofarbitraryphat (smart) contracts,
which are then executed off-chain in SGX enclaves. The blockchain
itself ensures consensus of transactions and validates the results of
this confidential contract execution [46]. Enclaves are also used for
key derivation, distribution, and storage. Users running enclaves
are rewarded with tokens on the blockchain. If consensus detects
malicious behavior such as mis-execution of a contract, workers are
punished by reducing rewards [45]. However, there is nomethod for
detecting confidentiality attacks such as a breach of contract data.
Node Registration. phala uses signing and encryption keys
generated in SGX enclaves to prove that messages come from an
enclave running trusted code. It uses the Gramine library to run its
code under SGX and produce a DCAP quote on request containing a
worker’s public key (i.e., WorkerKey), which itself is generated and
sealed by the enclave [47]. phala collects the collateral for the quote
from a phala server and submits it to the blockchain along with the
quote, which is verified on-chain. The mrenclave and mrsigner are
checked against a whitelist, and if present, the worker is accepted.

The worker is assigned a confidence tier based on the trust level
of the attestation result, with tiers 1-3 being suggested for highly
secure applications such as financial computations, and tiers 4-5
recommended for other use cases [44]. This ensures that messages
signed with the WorkerKey come from a trusted enclave.
Phat Contracts. Confidential smart contracts executed in phala
are known as phat contracts, which, in addition to privacy, provide
wider capabilities than traditional smart contracts as they are exe-
cuted off-chain in enclaves. Specifically, phat contracts are able to
access public networks and other chain data [48].

While phat contracts are also submitted in the clear, their state
remains encrypted in the SGX runtime. Execution requests for phat
contracts are encrypted under their individual ContractKeys then
submitted to the blockchain, providing confidentiality for contract
inputs. Execution requests aredirected to specific clusters ofworkers,
which have independent contract data and state. Clusters may re-
quire different fees for execution of phat contracts, and each worker
can only belong to one cluster. We note that at the time of writing,
the main phala network only consists of a single cluster, whose
admittance is controlled by the chain’s governance system.
Secrets. Not all SGX enclaves perform the same role in the phala
network. The most trusted workers are gatekeepers, which store a
MasterKey, fromwhich all ClusterKeys are derived [50]. In order
to prevent a leak of the MasterKey compromising all historical data,
it is periodically rotated. New gatekeepers are approved by vote on
the chain, and gatekeepers never directly execute phat contracts.
Other workers belong to clusters and store a common ClusterKey,
which itself is used to derive individual ContractKeys. These cluster
workers perform the actual execution of the phat contracts inside the
enclave. When communicating off-chain during contract execution,
workers use their WorkerKey to identify themselves and prove they
are communicating from inside the enclave.

7.2 Removing the Layers of Phat Contracts

Having extracted an attestation key (Section 6.3), we now proceed
to evaluate the resistance of phala to key compromises.
Node Setup. We use an HPE ProLiant ML30 Gen10 Plus server
equipped with an Intel Xeon E-2334 CPU running microcode 0x63
and BIOS version 2.20. Our machine is running Ubuntu 24.04 with
Linux kernel 6.11.0-21-generic. For software, we emulate our
own custom quoting enclave on the system, using the attestation
key recovered in Section 6.3. This allows us to create and sign arbi-
trary quotes, containing any data we choose. Moreover, by signing
enclaves in debuggingmode as having production status, we are able
to perform arbitrary inspections of SGX enclaves running on the
systemwithout being detected by SGX’s attestation mechanisms.
Network Setup. Running a gatekeeper with the high-
est tier of confidence on phala requires confidence tiers
1 to 3, which is equivalent to passing quote attestation in
CONFIGURATION_AND_SW_HARDENING_NEEDED status or better [44].

We set up a local testnet based on the phaladocumentation, using
officially providedDocker images to get official enclave builds [2, 49].
We first start a node with fresh chain state and use the same enclave
whitelist as the main network. We then create two workers with the
official signed enclave, assigning one as a gatekeeper, and creating
a cluster with the other. Finally, we also create the attacker enclave.

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

Modifying the phala Enclave. In order to show the conse-
quences of an enclave breach on phala’s security guarantees, we
modify the application code where workers are registered. After
fetching the quote from our running enclave, instead of directly
uploading this quote to the blockchain, we first overwrite the quote
measurements with those of the officially signed enclave.We re-sign
the quote with our emulated QE and upload the new forged quote,
which always passes the whitelist and DCAP attestation. Then, we
modify the enclave code to print out all secret keys when received.
Extracting Keys. We first enter our attacker enclave into a cluster
and note it is given access to the cluster key. Although the cluster key
is not directly distributed to our worker upon joining a cluster, we
initiate a transfer of the key from any other node in the cluster. This
transfer is completedwithout on-chain interaction, givenourworker
is part of the cluster. This cluster key can then be used to decrypt
all contract interactions within the cluster. Finally, when our testnet
accepted our node’s enclave as a gatekeeper, we directly receive a
copy of the master key, which is used to derive all cluster keys and
therefore all contract keys, allowing us to decrypt the entire testnet.

7.3 secret Overview

secret Network. Similar to phala, secret is also a privacy-
preserving smart contract system. secret network was one of the
first TEE-based blockchains to reach significant adoption, launching
its privacy-preserving smart contracts feature in 2020.
secret’s Architecture. secret consists of an SGX-based smart
contract execution layer adapted to run within an enclave, with an
independent consensus layer. To send messages to smart contracts,
users derive an encryption key from amaster key (io_master_key),
and include the ciphertext in a transaction. The corresponding
private key, derived from the consensus seed, is replicated throughout
the network and sealed by the SGX enclaves. To provide the ability
to roll the consensus seed in the event of compromise, the secret
network maintains both the initial and current consensus seeds.
RegisteringValidatorNodes. New validator nodes use remote at-
testation to registerwith secretnetwork. First, the newnode creates
an ephemeral keypair for use with the Curve25519 ECDH (Elliptic-
Curve Diffie-Hellman) key agreement scheme. More specifically,
Diffie-Hellman lets thenewnode and anyvalidator node alreadypart
of secret’snetworkderive the samesharedsecret fromtheirownpri-
vate key and the other node’s public key. This shared secret serves as
thekey toencryptanddecrypt theconsensusseedsusing128-bitAES-
SIVwith the newnode’s public key as additional data. Next, the node
createsanattestationreportused toauthenticatewith theblockchain,
which also contains the new node’s public key. To join the network,
the newnode broadcasts a transaction containing the sender address
of its wallet and the attestation report to the blockchain.

Existing nodes in the network observe this transaction and use
their own enclave to verify the attestation report. If the checks pass,
the node unseals the original and current consensus seeds, and
encrypts themwith the ECDH-derived shared secret key. Finally, the
node updates the transaction with the concatenated ciphertexts as
the encrypted_seed. Next, the joining node queries the blockchain
for the encrypted_seed with its own public key to retrieve the
ciphertexts, and decrypts each of them using the ECDH-derived
shared secret key to retrieve the consensus seeds. Finally, it seals
these consensus seeds inside its enclave to ensure confidentiality.

7.4 Extracting Secrets from secret

Setup. Weutilize the samehardware setup andemulatedquoting en-
clave from earlier. To setup our own validator machine with this, we
ran the official unmodified secret binary on their Pulsar-3 testnet.
Masquerading as a secret Enclave. We first generate our own
ephemeral keypair outside of the enclave, retrieve the DCAP quote
from the local filesystem and replace the the public key in the DCAP
quote with our own public key. We sign the DCAP quote with the
extracted ECDSA attestation key and produce the combined attes-
tation report, which we then broadcast onto secret’s blockchain.
After an existing node validates our attestation report, we can then
proceed to retrieve the encrypted_seed for our public key. We can
verify that our forged DCAP quote is indeed perceived as genuine
by the existing nodes, as the encrypted_seedwould otherwise not
be available for our public key. Using the ECDH algorithmwith our
private key and the consensus exchange seed public key, we derive
the shared secret key to decrypt the concatenated ciphertexts to
produce the initial and the current consensus seeds. As AES-SIV
provides authenticated encryption with associated data (AEAD),
we can easily verify whether we have the correct shared secret key
or not, as we would otherwise fail to authenticate, and thus not be
able to decrypt the individual ciphertexts.
Decrypting Transactions. With access to the initial and
the current consensus seeds we were able to directly decrypt
any transactions on secret’s test network, thus allowing us to
completely breach secret’s confidentiality guarantees.

7.5 Directly Attacking Enclave Secrets

Beyond attacks on DCAP attestation, we note that SGX’s deter-
ministic memory encryption allows us to attack enclaves directly,
potentially extracting the secrets within them. Thus, hardening the
Intel-supplied SGX attestation primitives is not sufficient tomitigate
our attack. Demonstrating this, we attack OpenSSL’s constant-time
ECDSA implementation as described in Cipherleaks [36]. To that
aim, we create a victim enclave that performs an ECDSA signing
operation using the Intel SGX SSL library, which itself is based on
OpenSSL version 3.0.14 [26].
OpenSSL Scalar by Point Multiplication. Recalling the
description in Section 6.2 of ECDSA and how an ECDSA key
can be recovered from a nonce 𝑘 , we now focus on OpenSSL’s
implementation of scalar by point multiplication, which differs from
Intel’s IPP library used in Algorithm 1.

More specifically,Algorithm2 shows simplifiedpseudocodeof the
Montgomery ladder scalar by point multiplication implemented in
OpenSSL[54].Thealgorithmtakesanelliptic curvepoint𝑝 andscalar
𝑘 with𝑁 bits. First, in Lines 1-2, the points 𝑠 and 𝑟 are initialized to 2𝑝
and𝑝 respectively, andabitprev is initialized to1. Lines 3-7 loopover
the bits of𝑘 , setting 𝑖 to the indexof the current bit. Then, a swapbit is
computed as bit=𝑘𝑖 ⊕prev in Line 4. Next, the ConditionalSwap
method is performed on variable bit and points 𝑟 , 𝑠 . TheCondition-
alSwapmethod swaps thememory contents of the points if and only
if the bit is 1. We note the implementation ensures the conditional
swap is done in constant-time, avoiding leakage via branching. Line
6 computes the Montgomery ladder step, updating 𝑟 =2𝑟 and 𝑠 =𝑟+𝑠 .
Next, the prev bit is updated as prev = prev ⊕ bit, and the loop

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

continues or ends at Line 7. After the loop, Line 8 performs a final
ConditionalSwap on 𝑟 and 𝑠 , using prev as the condition.

Algorithm 2 Simplified representation of scalar multiplication
using a constant-timeMontgomery ladder in OpenSSL.
Input: An elliptic curve point 𝑝 , and an 𝑁 -bit scalar 𝑘 , where 𝑘𝑖

is the 𝑖th bit of 𝑘 .
1: 𝑟 =2𝑝, 𝑠 =𝑝
2: prev=1
3: for 𝑖 =𝑁 −1 to 0 do
4: bit=𝑘𝑖 ⊕prev
5: 𝑟, 𝑠 = ConditionalSwap(bit, 𝑟 , 𝑠)
6: 𝑟 =2𝑟, 𝑠 =𝑟+𝑠
7: prev=prev⊕bit
8: 𝑟, 𝑠 = ConditionalSwap(prev, 𝑟 , 𝑠)
9: return 𝑟

OpenSSL Key Extraction. First, we identify the memory location
of the variable of interest, the encrypted values of which could be
used to reveal thenonce𝑘 .Whileweuse𝑟 going forward,wenote that
a similar attack could be done using 𝑠 as well. Next, as our memory
interposition setup can only monitor a single DIMM, we ensure that
𝑟 is visible by pinning its page to an observable physical address (see
Section 5.2).Moreover, as Line 5 ofAlgorithm2operates over a single
conditional bit at a time, we avoid the use of the pre-built ciphertext
dictionary enclave used in Section 6.3, instead setting up our logic
analyzer to trigger on reads to 𝑟 ’s address. We then run the victim
enclave, overcoming caching as described in Section 5.3. We utilize
our enclave control channel to interrupt the victim enclave before
and after each conditional swap, and obtain the encryption of 𝑟 at
each point. In Algorithm 2, this corresponds to obtaining 𝑟 twice—
onceatLine4, andagain immediately after the executionofLine5but
before Line 6. Because of SGX’s deterministic memory encryption,
we know that if we obtain the same ciphertext twice, then a swap
did not occur in Line 5 (and vice versa). With the swap information,
we recover the value of bit for each iteration and thus the value of
𝑘 . Finally, replicating [36], we have empirically demonstrated this
attack using the interposition setup outlined in Section 4, extracting
random nonces from OpenSSL-based ECDSA signing operations,
thus compromising the signing key inside our victim enclave.

8 Compromising Integrity Guarantees

For our third case study, we focus on crust, a decentralized
blockchain storage system that utilizes SGX enclaves to guarantee
proof of storage of files on the network. More specifically, we look
at how a compromised attestation key can affect the integrity guar-
antees of applications that solely rely on SGX to enforce correctness
of execution. We demonstrate how an attacker can fake proofs of
storage by running a modified enclave, forging a valid quote for the
verified enclave’s state. This forged proof allows an attacker to claim
rewards for storage without actually storing the required data.

8.1 crust Network Overview

crust is a blockchain network that provides decentralized guar-
anteed storage of files built on the peer-to-peer IPFS file sharing
protocol [41]. crust allows users to store arbitrary data, utilizing

SGX to ensure data is stored honestly without trusting the storage
operators. Storage merchants run storage services that consist of an
IPFS node and an SGX enclave, which produces proofs of file storage,
and a proof of available storage space. Nodes must stake currency as
collateral while storing files in order to receive rewards [40]. Users
execute storage orders on the blockchain with a request to store
a file, and the first four storage merchants that produce a proof of
storage of this file are immediately paid a portion of the storage fee.
If the storage merchant fails to produce a proof of storage for the
file regularly, they will lose collateral.
New Node Registration. The crust SGX enclave produces its
proofs of storage by signing data with an ECDSA key (the node key)
that is generated and stored solely inside the enclave. To register
a new storage node on the network, the enclave first generates its
node key and then creates a DCAP quote containing the mrenclave
and key, and additionally signs the quote with this same key. This
quote is sent to a trusted DCAP remote attestation server operated
by crust which verifies the quote using Intel’s quote verification
library and returns a new signature over both the enclave’s node
key and its mrenclave identifier. The DCAP server’s public key
is pre-approved and stored by the crust blockchain as the root of
trust, alongwith awhitelist of allowed mrenclave values. Assuming
the SGX quote is legitimate and its signature chain can be verified
up to Intel’s certificate authority, this guarantees the node key was
generated inside a trusted crust enclave binary.
Generating Proofs of Available Storage Space. The crust
enclave produces proofs of storage space by signing messages with
its generated node key. This proof is produced by the enclave by
first storing a requested amount of sealed random data, with the
enclave computing a cryptographic hash of the random data as
it is being generated. To later prove the storage space exists, it
re-computes the hash on the stored data. If the hashes match, then
the enclave uses the node key to produce a message and signature
attesting that the requested amount of storage physically exists.
This message-signature pair is then broadcast to the network.
Generating Proofs of File Storage. The proof of file storage
operates similarly. When a file is initially stored, it is hashed, and
this hash is stored in an SGX-sealed database on disk. To later prove
to others that the correct file is still stored, the enclave hashes the file
again and verifies the hash has not changed. A recent storage report
signed by the node key must be uploaded to the blockchain every
600 blocks, or files are considered lost by the worker. Similarly, if
verification of a file fails, this is included in the report. Additionally,
within each storage report, the enclave includes a hash computed
over all stored file hashes. When a report is uploaded, this hash is
verified by the chain, ensuring the contents of files are correct. If the
storage state changes between reports, nodes additionally check the
file state transition is valid. Finally, an off-chain worker known as
the spowerworker checks these reports and performs calculations
to determine rewards and maintain storage records [42].
crust Integrity Guarantees. crust relies solely on the initial
node registration and SGX attestation to guarantee that the node is
running a trusted, unmodified binary which will correctly execute
proofs. However, as seen earlier, an attacker with an attestation
private key can sign arbitrary report information. This means that
an attacker can modify the enclave code at will but produce a quote

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

attesting that the enclave’s mrenclave is any desired value (includ-
ing that of a trusted crust binary). Similarly, an attacker could also
register a node key generated outside the enclave. Either of these at-
tacks completely violate the integrity of the crust system, allowing
the attacker to forge proofs at will and collect illegitimate rewards.

8.2 Storing Gigabytes of Data with Only 32 Bytes

Setup. Running a storage merchant on crust requires one to
show a DCAP-capable CPUwhere Intel’s quote verification library
does not reject the quote (i.e., that is not invalid or revoked). We
use the same hardware setup and emulated quoting enclave from
Section 7.2 to emulate this configuration.

We then setup our own local testnet based on the crust
documentation and the latest officially published Docker images
[1, 43]. We first start two nodes that peer with each other on a
fresh chain state, and an API service to interact with the chain.
Once we start our nodes, we set the allowed mrenclave and DCAP
attestation server public key to the same as that of the main crust
network. Next, we initialize an spower node to verify and calculate
storage rewards, an enclave manager, and IPFS node. Finally, we
start an enclave, and can send storage orders on the network.
Modifying the crust Enclave. To demonstrate the impact of
an SGX breach on crust, we modify crust’s application code by
hooking the SGX library functions sgx_qe_get_quote_size and
sgx_qe_get_quote. When crust requests a quote for a locally
verifiable report, we overwrite the mrenclave identifier with the
original signed enclave’s.We then directly assemble and sign a quote
with our attestation private key. Then, we follow the same steps as
in Section 7.2 to produce a valid quote by utilizing a reference quote.
Forging Storage Proofs. Since the network always trusts the
node’s stated value of available storage space (as the integrity of
this measurement should be guaranteed by the enclave’s security
properties), we report our node as having an arbitrary amount of
storage space up to the network’s limit of 2 PB. To produce proofs of
storage, we must still store the hash of each file though. We modify
the enclave to simply store the hash instead of the file’s data. This
hash is only 32 bytes regardless of the size of the file, which could
be up to 32 GB as dictated by IPFS limits. With this, we can prove
we store files without actually storing any of the file’s contents.

Utilizing this, we instantly store any size file, beating honest
storagemerchants and claiming storage fee shares. Furthermore, we
easily maintain proof of storage of an arbitrary amount of files, and
thus will never be penalized or caught by the network’s on-chain
validation mechanisms. However, when a user tries to retrieve their
file, they will not be able to get a copy from our IPFS node. Instead,
another IPFS node (from the original four storing the file) will
transparently serve the file to the user, leaving our attack undetected.

9 Mitigations and FutureWork

Avoiding Deterministic Encryption. One of the fundamental
issues we observed was the use of 128-bit AES-XTS deterministic
memory encryption bymodern Intel SGX servermachines. Drawing
inspiration from AEGIS [63, 64], older (and now deprecated) client
SGX implementations used on-die Merkle trees to provide the EPC
with confidentiality and integrity guarantees. Most importantly,
these implementations provided freshness guarantees, designed

explicitly to prevent attackers from observing the same ciphertexts
when the same plaintext is stored at the same physical address [9].
Unfortunately, storing these Merkle trees also carries substantial
overhead,which in turn limited the EPC size to 512MB.Determining
how to reconcile these goals and obtain scalable implementations of
encryptedmemory without sacrificing security guarantees, remains
an open, but clearly necessary, research problem.
Accordion CipherMode. Recently, NIST has been considering
proposals for accordion mode for block ciphers, which would allow
for adjustable block sizes beyond standardized 128, 192 or 256 bits
[53]. We note that these modes are unlikely to prevent dictionary at-
tacks such as ours, as cryptographic algorithms typically do not have
sufficientlyhighentropy in their internal state during individual loop
operations. Thus, to prevent dictionary-based attacks, is imperative
to ensure there is sufficient entropy inside each encryption block.
Quote Encryption. Prior client-oriented SGX implementations
used a defense-in-depth countermeasure, which encrypted the
EPID signature inside the attestation quote using the public key
of the attestation server [11]. Doing so for Intel’s DCAP protocol
would mitigate our attestation key extraction attacks, as it would
prevent us from obtaining the information necessary to convert
our extracted nonce to an attestation key. We note however that
this mitigation is far from a complete solution, as attackers can still
potentially directly target sensitive data not related to attestation.
Faster Bus Speeds. Our attacks were made significantly simpler
by being able to slow the machine’s memory speed to 1333 MT/s,
which is below JEDEC DDR4 specifications. While being far from
a complete mitigation, imposing higher bus speeds such as 3200
MT/s, will raise the bar for low-budget bus-level attackers.
Permissioned Systems and SecureMultiparty Computation

(MPC). A common issuewe observedwithmany SGXdeployments
is that they are permissionless, meaning a node solely needs to
present a trusted attestation status, with no additional context, to
be entrusted with security-critical roles. This has the unfortunate
implication that secrets are often physically placed in adversarial
hands, resulting in their extraction. Thus, SGX developers should
consider either limiting the location of their nodes to highly
reputable cloud operators with strong physical security practices,
or accept the possibility that enclaves will be breached occasionally.
To mitigate the latter, MPC-based systems can be used to distribute
trust amongmultiple parties, requiring their simultaneous breach
for key extraction [70]. However, given the overhead resulting
from MPC-based constructions, we leave the task of efficiently
implementing them in SGX deployments to future work.
SGXas a Single Point of Failure. Weobserved thatmany systems
relied on SGX as a root of trust, resulting in SGX being a single point
of failure. Although some systems require permissions by barring
registration fromunknownsources, they still contain single points of
failure such as provisioning a single master key to all SGX enclaves.
This can be mitigated by designing the system to distribute trust,
ensuring no single party is able to control a single point of failure.
AEX-Notify andOtherMitigations. Recently introduced on Intel
platforms, AEX-notify allows enclaves to register a trusted handler
to be run after an interrupt or exception, thereby thwartingdetermin-
istic single-stepping [8]. While making interposition attacks such as
ours harder, we note that this still will not completely mitigate the
issue, as memory accesses to deterministically-encrypted secrets

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

are still performed during computations. These memory accesses
in turn can be potentially intercepted without single stepping, albeit
requiring more sophisticated LA triggers. Finally, software mitiga-
tions might be used to harden enclaves against bus interposition
attacks. However, these require collaboration from Intel (to harden
Intel-provided enclaves), and a suitable compiler for countermeasure
deployment, as well as the re-compilation of all SGX software.
AMDSEVand Intel TDX. While our setup is transferable to AMD
platforms which also use deterministic encryption, AMD SEV-SNP
already allows the hypervisor to issue memory accesses for reading
SEV ciphertexts. Indeed, this has been exploited by prior work [35,
36, 73, 74] to mount ciphertext attacks on SEV-SNP using software-
only means, negating the need for our techniques. Finally, another
application of deterministic encryption appears to be Intel Trust Do-
main Extension (TDX). However, as our current setup is only able to
capture DDR4 traffic and with TDX only being available on systems
which use DDR5 memory, we leave the task of constructing a cheap
DDR5 interposition setup, supporting DDR5’s significantly higher
bus speeds and multi-cycle transmission protocol, to future work.

10 Conclusion

In this paper we set out to examine the gap between SGX’s stated
threat model and those of actual real world deployments.We demon-
strated how the security guarantees of scalable SGX can be under-
mined by hobbyists, constructing a logic analyzer based memory
interpositionsetup forunder$1,000.Combiningoursetupwith there-
cent shift towards server deployments and scalable SGX,which relies
on Intel TME’s deterministic encryptionmechanism,wewere able to
performanewciphertext side channel attack to extract aDCAPattes-
tation key from a Xeon Scalable server in fully trusted status for the
first time. Moreover, we investigated a number of case studies, show-
ing how this can breach the confidentiality and integrity guarantees
of real world SGX deployments such as phala, crust, and secret,
allowing an attacker to recover private data and obtain illegitimate
rewards. Finally, we discussed several potential mitigations.

Acknowledgments

This research was supported by the Air Force Office of Scientific
Research (AFOSR) under award number FA9550-24-1-0079; the
Alfred P Sloan Research Fellowship; and gifts from Qualcomm,
Zama and Zellic.

References

[1] 2025. Crustio | Docker Hub. https://hub.docker.com/u/crustio
[2] 2025. phalanetwork | Docker Hub. https://hub.docker.com/u/phalanetwork
[3] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and

Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized Data
from the Microarchitecture. In USENIX Security.

[4] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One glitch to rule them all: Fault injection attacks against AMD’s Secure
Encrypted Virtualization. InACM SIGSAC.

[5] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data onMeltdown-resistant
CPUs. InACMCCS.

[6] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio DGarcia. 2021. VoltPillager: Hardware-based fault injection attacks against
Intel SGX enclaves using the SVID voltage scaling interface. In USENIX Security.

[7] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform

for confidentiality-preserving, trustworthy, and performant smart contracts. In
EuroS&P.

[8] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya
Alexandrovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein.
2023. AEX-Notify: Thwarting precise Single-Stepping attacks through interrupt
awareness for intel SGX enclaves. In USENIX Security.

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016/086.

[10] Crust. 2025. Crust. https://crust.network/
[11] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia

Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. CacheQuote: Efficiently
recovering long-term secrets of SGX EPID via cache attacks. TCHES (2018).

[12] Jesse De Meulemeester, LucaWilke, David Oswald, Thomas Eisenbarth, Ingrid
Verbauwhede, and Jo Van Bulck. 2024. BadRAM: Practical Memory Aliasing
Attacks on Trusted Execution Environments. In IEEE S&P.

[13] Oasis Protocol Foundation. 2025. Oasis. https://oasis.net/
[14] Shay Gueron. 2016. A memory encryption engine suitable for general purpose

processors. Cryptology ePrint Archive (2016).
[15] DavidGullasch,EndreBangerter, andStephanKrenn. 2011. Cachegames–Bringing

access-based cache attacks on AES to practice. In IEEE S&P.
[16] Integritee. 2021. Integritee Lightpaper. https://www.integritee.network/docs/

Integritee_%20Lightpaper_2021.pdf
[17] Integritee. 2024. Integritee Network Docs. https://docs.integritee.network/
[18] Integritee. 2025. Enclave Dashboard for Integritee Network. https:

//enclaves.integritee.network/?rpc=wss://paseo.api.integritee.network
[19] Intel. 2015. Improving real-time performance by utilizing Cache Allocation

Technology. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/cache-allocation-technology-white-paper.pdf.

[20] Intel. 2018. Memory Address Translation DSM Interface. https://cdrdv2-
public.intel.com/603354/338177-address-translate-dsm-specification-001.pdf

[21] Intel. 2021. Intel ® Software Guard Extensions (Intel® SGX) for SuperMicro*
Servers Enabling Guide. https://cdrdv2-public.intel.com/646654/646654_Intel_
SGX_Enabling_Guide_Rev1p0.pdf

[22] Intel. 2021. Intel® Hardware Shield – Intel® Total Memory Encryption.
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/
white-paper-intel-tme.pdf.

[23] Intel. 2021. Supporting Intel SGX on multi-socket platforms. https:
//web.archive.org/web/20220822150148/https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-
mulit-socket-platforms.pdf.

[24] Intel. 2024. SGXDataCenterAttestationPrimitives. https://github.com/intel/
SGXDataCenterAttestationPrimitives

[25] Intel. 2025. Intel Software Guard Extensions Attestation Service Utilizing Intel
Enhanced Privacy ID. https://www.intel.com/content/www/us/en/developer/
archive/tools/sgx-attestation-service-utilizing-epid.html

[26] Intel. 2025. Intel® Software Guard Extensions SSL for SGX SDK 2.25, with
OpenSSL 3.0.14. https://github.com/intel/intel-sgx-ssl/releases/tag/3.0_Rev4

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing–and its Application
to AES. In IEEE S&P.

[28] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bölcskei, and
Kaveh Razavi. 2024. ZenHammer: Rowhammer Attacks on AMD Zen-based
Platforms. In USENIX Security.

[29] JEDEC. 2019. Annex L: Serial Presence Detect (SPD) for DDR4 SDRAMModules.
JEDEC Standard 21-C, Section 4.1.2.L-4. https://www.jedec.org/standards-
documents/docs/spd412l-4

[30] JEDEC. 2021. DDR4 SDRAM STANDARD. https://www.jedec.org/standards-
documents/docs/jesd79-4a

[31] JESD79-4C 2020. DDR4 SDRAM. Standard. JEDEC.
[32] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.

2016. A High-Resolution Side-Channel Attack on Last-Level Cache. In DAC.
[33] Ahmed Kosba, AndrewMiller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In IEEE S&P.

[34] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa. 2020.
AnOff-Chip attack on hardware enclaves via thememory bus. InUSENIX Security.

[35] MengyuanLi, LucaWilke, JanWichelmann, Thomas Eisenbarth, RaduTeodorescu,
and Yinqian Zhang. 2022. A systematic look at ciphertext side channels on AMD
SEV-SNP. In IEEE S&P.

[36] Mengyuan Li, Yinqian Zhang, HuiboWang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking constant-time cryptography on AMD SEV via the
ciphertext side channel. In USENIX Security.

[37] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE S&P.

[38] Tony Luck. 2018. ACPI/ADXL: Add address translation interface
using an ACPI DSM. https://github.com/torvalds/linux/commit/
4cf841e398503990df640f7a7c5b2ea56f11c08c

https://hub.docker.com/u/crustio
https://hub.docker.com/u/phalanetwork
https://crust.network/
https://oasis.net/
https://www.integritee.network/docs/Integritee_%20Lightpaper_2021.pdf
https://www.integritee.network/docs/Integritee_%20Lightpaper_2021.pdf
https://docs.integritee.network/
https://enclaves.integritee.network/?rpc=wss://paseo.api.integritee.network
https://enclaves.integritee.network/?rpc=wss://paseo.api.integritee.network
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://cdrdv2-public.intel.com/603354/338177-address-translate-dsm-specification-001.pdf
https://cdrdv2-public.intel.com/603354/338177-address-translate-dsm-specification-001.pdf
https://cdrdv2-public.intel.com/646654/646654_Intel_SGX_Enabling_Guide_Rev1p0.pdf
https://cdrdv2-public.intel.com/646654/646654_Intel_SGX_Enabling_Guide_Rev1p0.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://web.archive.org/web/20220822150148/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://web.archive.org/web/20220822150148/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://web.archive.org/web/20220822150148/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://web.archive.org/web/20220822150148/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://www.intel.com/content/www/us/en/developer/archive/tools/sgx-attestation-service-utilizing-epid.html
https://www.intel.com/content/www/us/en/developer/archive/tools/sgx-attestation-service-utilizing-epid.html
https://github.com/intel/intel-sgx-ssl/releases/tag/3.0_Rev4
https://www.jedec.org/standards-documents/docs/spd412l-4
https://www.jedec.org/standards-documents/docs/spd412l-4
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://github.com/torvalds/linux/commit/4cf841e398503990df640f7a7c5b2ea56f11c08c
https://github.com/torvalds/linux/commit/4cf841e398503990df640f7a7c5b2ea56f11c08c

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

[39] David McGrew, K Igoe, and M Salter. 2011. RFC 6090: Fundamental Elliptic Curve
Cryptography Algorithms.

[40] Crust Network. 2021. Storage Merchant. https://github.com/crustio/crust-wiki/
blob/f27cab9fcb7ba792903c96907b08014df17c88bb/docs/storage-merchant.md

[41] Crust Network. 2022. Crust Storage 101. https://github.com/crustio/crust-
wiki/blob/49eaaee592c553afe4cb6c87ede49bf4ea3c2a5f/docs/build-101.md

[42] Crust Network. 2024. Crust Network System Optimization: Enhanc-
ing On-Chain Computation Efficiency and File Spower Processing.
https://medium.com/crustnetwork/crust-network-system-optimization-
enhancing-on-chain-computation-efficiency-and-file-spower-e49c006cd99c

[43] Crust Network. 2024. Crust Node. https://github.com/crustio/crust-
wiki/blob/1cd68f06abee7336b588b252576186f3e7862ee0/docs/build-node.md

[44] PhalaNetwork.2023. ConfidenceLevel&SGXFunction. https://github.com/Phala-
Network/phala-docs/blob/ebcd4355ca8a3f8911fa07fc6647f660488cf2c3/
compute-providers/basic-info/confidence-level-and-sgx-function.md

[45] Phala Network. 2024. Gemini Tokenomics (Worker Rewards). https://github.com/
Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/
compute-providers/basic-info/worker-rewards.md

[46] Phala Network. 2024. Phala Blockchain in Detail. https://github.com/Phala-
Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-
specs/blockchain/README.md

[47] Phala Network. 2024. phala-blockhain: pal_gramine.rs. https://github.com/Phala-
Network/phala-blockchain/blob/c8b71e935999993b2931cbb0739c1426c675f658/
standalone/pruntime/src/pal_gramine.rs#L46

[48] Phala Network. 2024. Phat Contracts. https://phala.network/phat-contract
[49] Phala Network. 2024. Run Local Testnet. https://github.com/Phala-

Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/
references/advanced-topics/run-local-testnet.md

[50] Phala Network. 2024. Secret Key Hierarchy. https://github.com/Phala-
Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-
specs/blockchain/secret-key-hierarchy.md

[51] Secret Network. 2025. Secret Network. https://scrt.network/
[52] SecretNetwork. 2025. SecretNetworkGraypaper. https://scrt.network/graypaper
[53] NIST. 2025. PRE-DRAFT Call for Comments: NIST Launches Development of

Cryptographic Accordions. https://csrc.nist.gov/pubs/sp/800/197/a/iprd
[54] OpenSSL. 2021. openssl/crypto/ec/ec_mult.c. https://github.com/openssl/

openssl/blob/openssl-3.0.14/crypto/ec/ec_mult.c#L352
[55] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and

Countermeasures: the Case of AES. In CT-RSA.
[56] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan.
[57] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAMAddressing for Cross-CPU Attacks.
In USENIX Security, Thorsten Holz and Stefan Savage (Eds.).

[58] Zheng Leong Chua Peyman Momeni, Setareh Ghorshi. 2024. Mul-
timodal Cryptography Series – Accountable MPC + TEE. https:
//hackmd.io/\spacefactor\@m{}Fairblock/rkSiU78TR

[59] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CROSSTALK: Speculative Data leaks Across Cores Are Real. In IEEE S&P.

[60] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018.
Supporting third party attestation for Intel SGXwith Intel Data Center Attestation
Primitives. https://www.intel.com/content/dam/develop/external/us/en/
documents/intel-sgx-support-for-third-party-attestation-801017.pdf. (2018).

[61] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. InACMCCS.

[62] Aaditya Shidham. 2025. Trusted Execution Environments (TEEs): A primer. https:
//a16zcrypto.com/posts/article/trusted-execution-environments-tees-primer/

[63] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. 2003. AEGIS: Architecture for tamper-evident and tamper-resistant
processing. InACM International Conference on Supercomputing.

[64] G Edward Suh, Charles W O’Donnell, and Srinivas Devadas. 2007. AEGIS: A
single-chip secure processor. IEEE Design & Test of Computers (2007).

[65] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas FWenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In USENIX Security.

[66] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. Rogue
In-flight Data Load. In IEEE S&P.

[67] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In IEEE
S&P.

[68] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Daniel Genkin, AndrewMiller, Eyal Roonen, Yuval Yarom, and Christina Garman.
2021. SoK: SGX.Fail: How Stuff Gets eXposed. In IEEE S&P.

[69] Wikipedia. 2025. Intel QuickPath Interconnect. https://en.wikipedia.org/wiki/
Intel_QuickPath_Interconnect

[70] Pengfei Wu, Jianting Ning, Jiamin Shen, Hongbing Wang, and Ee-Chien
Chang. 2022. Hybrid Trust Multi-party Computation with Trusted Execution
Environment. In NDSS.

[71] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In IEEE S&P.

[72] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[73] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian Zhang,
and Zhendong Su. 2024. HyperTheft: ThievingModelWeights from TEE-Shielded
Neural Networks via Ciphertext Side Channels. InACMCCS.

[74] Yuanyuan Yuan, Zhibo Liu, Sen Deng, Yanzuo Chen, Shuai Wang, Yinqian Zhang,
and Zhendong Su. 2025. CipherSteal: Stealing Input Data from TEE-Shielded
Neural Networks via Ciphertext Side Channels. In IEEE S&P.

[75] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
crier: An authenticated data feed for smart contracts. In ACMCCS.

[76] Shunfan (Shelven)Zhou. 2022. TechnicalAnalysis ofwhyPhalawill not be affected
by the Intel SGX chip vulnerabilities. https://phala.network/posts/technical-
analysis-of-why-phala-will-not-be-affected-by-the-intel-sgx-chip-
vulnerabilities-e045b0189dc2

A MiscellaneousMapping Functions

A.1 ChannelAddress

ChannelAddress Bits Physical Address Bits

𝑏 [0..7] 𝑏 [0..7]
𝑏 [8..27] 𝑏 [11..30]
𝑏28 ¬𝑏31∧(𝑏32∨𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏29 (𝑏31∨𝑏32∨¬𝑏33)∧(¬𝑏32∨𝑏33)∧(¬𝑏31∨𝑏33)

∧(𝑏31∨𝑏32∨𝑏34∨𝑏35∨𝑏36)
𝑏30 (𝑏31⊕𝑏32)∧(𝑏31∧𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏31 (𝑏31∨𝑏32∨𝑏33∨¬𝑏34)∧(¬𝑏33∨𝑏34)

∧(¬𝑏31∨𝑏34)∧(𝑏31∨𝑏32∨𝑏33∨𝑏35∨𝑏36)
𝑏32 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨¬𝑏35)∧(¬𝑏34∨𝑏35)

∧(¬𝑏33∨𝑏35)∧(¬𝑏32∨𝑏35)
∧(𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏36)

𝑏33 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏35)∧𝑏36

A.2 RankAddress

RankAddress Bits Physical Address Bits

𝑏 [0..7] 𝑏 [0..7]
𝑏 [8..27] 𝑏 [11..30]
𝑏28 ¬𝑏31∧(𝑏32∨𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏29 (𝑏31∨𝑏32∨¬𝑏33)∧(¬𝑏32∨𝑏33)∧(¬𝑏31∨𝑏33)

∧(𝑏31∨𝑏32∨𝑏34∨𝑏35∨𝑏36)
𝑏30 (𝑏31⊕𝑏32)∧(𝑏31∧𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏31 (𝑏31∨𝑏32∨𝑏33∨¬𝑏34)∧(¬𝑏33∨𝑏34)

∧(¬𝑏31∨𝑏34)∧(𝑏31∨𝑏32∨𝑏33∨𝑏35∨𝑏36)
𝑏32 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨¬𝑏35)∧(¬𝑏34∨𝑏35)

∧(¬𝑏33∨𝑏35)∧(¬𝑏32∨𝑏35)
∧(𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏36)

𝑏33 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏35)∧𝑏36

https://github.com/crustio/crust-wiki/blob/f27cab9fcb7ba792903c96907b08014df17c88bb/docs/storage-merchant.md
https://github.com/crustio/crust-wiki/blob/f27cab9fcb7ba792903c96907b08014df17c88bb/docs/storage-merchant.md
https://github.com/crustio/crust-wiki/blob/49eaaee592c553afe4cb6c87ede49bf4ea3c2a5f/docs/build-101.md
https://github.com/crustio/crust-wiki/blob/49eaaee592c553afe4cb6c87ede49bf4ea3c2a5f/docs/build-101.md
https://medium.com/crustnetwork/crust-network-system-optimization-enhancing-on-chain-computation-efficiency-and-file-spower-e49c006cd99c
https://medium.com/crustnetwork/crust-network-system-optimization-enhancing-on-chain-computation-efficiency-and-file-spower-e49c006cd99c
https://github.com/crustio/crust-wiki/blob/1cd68f06abee7336b588b252576186f3e7862ee0/docs/build-node.md
https://github.com/crustio/crust-wiki/blob/1cd68f06abee7336b588b252576186f3e7862ee0/docs/build-node.md
https://github.com/Phala-Network/phala-docs/blob/ebcd4355ca8a3f8911fa07fc6647f660488cf2c3/compute-providers/basic-info/confidence-level-and-sgx-function.md
https://github.com/Phala-Network/phala-docs/blob/ebcd4355ca8a3f8911fa07fc6647f660488cf2c3/compute-providers/basic-info/confidence-level-and-sgx-function.md
https://github.com/Phala-Network/phala-docs/blob/ebcd4355ca8a3f8911fa07fc6647f660488cf2c3/compute-providers/basic-info/confidence-level-and-sgx-function.md
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/compute-providers/basic-info/worker-rewards.md
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/compute-providers/basic-info/worker-rewards.md
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/compute-providers/basic-info/worker-rewards.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/README.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/README.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/README.md
https://github.com/Phala-Network/phala-blockchain/blob/c8b71e935999993b2931cbb0739c1426c675f658/standalone/pruntime/src/pal_gramine.rs#L46
https://github.com/Phala-Network/phala-blockchain/blob/c8b71e935999993b2931cbb0739c1426c675f658/standalone/pruntime/src/pal_gramine.rs#L46
https://github.com/Phala-Network/phala-blockchain/blob/c8b71e935999993b2931cbb0739c1426c675f658/standalone/pruntime/src/pal_gramine.rs#L46
https://phala.network/phat-contract
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/references/advanced-topics/run-local-testnet.md
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/references/advanced-topics/run-local-testnet.md
https://github.com/Phala-Network/phala-docs/blob/3aed43d8faeec26a9c1a610155d609eada2ff84e/references/advanced-topics/run-local-testnet.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/secret-key-hierarchy.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/secret-key-hierarchy.md
https://github.com/Phala-Network/phala-docs/blob/f64960997c1dbcf912e1d5295f75eeb151add2ba/tech-specs/blockchain/secret-key-hierarchy.md
https://scrt.network/
https://scrt.network/graypaper
https://csrc.nist.gov/pubs/sp/800/197/a/iprd
https://github.com/openssl/openssl/blob/openssl-3.0.14/crypto/ec/ec_mult.c#L352
https://github.com/openssl/openssl/blob/openssl-3.0.14/crypto/ec/ec_mult.c#L352
https://hackmd.io/\spacefactor \@m {}Fairblock/rkSiU78TR
https://hackmd.io/\spacefactor \@m {}Fairblock/rkSiU78TR
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://a16zcrypto.com/posts/article/trusted-execution-environments-tees-primer/
https://a16zcrypto.com/posts/article/trusted-execution-environments-tees-primer/
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://phala.network/posts/technical-analysis-of-why-phala-will-not-be-affected-by-the-intel-sgx-chip-vulnerabilities-e045b0189dc2
https://phala.network/posts/technical-analysis-of-why-phala-will-not-be-affected-by-the-intel-sgx-chip-vulnerabilities-e045b0189dc2
https://phala.network/posts/technical-analysis-of-why-phala-will-not-be-affected-by-the-intel-sgx-chip-vulnerabilities-e045b0189dc2

CCS ’25, October 13–17, 2025, Taipei, Taiwan Alex Seto et al.

A.3 Column

Column Bits Physical Address Bits

𝑏 [0..2] 𝑏 [3..5]
𝑏3 𝑏16
𝑏4 𝑏7
𝑏 [5..9] 𝑏 [11..15]

A.4 BankGroup

BankGroup Bits Physical Address Bits

𝑏0 𝑏6⊕𝑏23
𝑏1 𝑏20⊕𝑏24

A.5 MemoryControllerId

MemoryControllerId Bits Physical Address Bits

𝑏0 𝑏8⊕𝑏14⊕𝑏22
𝑏1 𝑏9⊕𝑏15⊕𝑏23

A.6 ChannelId

ChannelId Bits Physical Address Bits

𝑏0 𝑏10⊕𝑏16⊕𝑏24

A.7 Row

RowBits Physical Address Bits

𝑏 [0..2] 𝑏 [17..19]
𝑏 [3..10] 𝑏 [23..30]
𝑏11 ¬𝑏31∧(𝑏32∨𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏12 (𝑏31∨𝑏32∨¬𝑏33)∧(¬𝑏32∨𝑏33)∧(¬𝑏31∨𝑏33)

∧(𝑏31∨𝑏32∨𝑏34∨𝑏35∨𝑏36)
𝑏13 (𝑏31⊕𝑏32)∧(𝑏31∧𝑏33∨𝑏34∨𝑏35∨𝑏36)
𝑏14 (𝑏31∨𝑏32∨𝑏33∨¬𝑏34)∧(¬𝑏33∨𝑏34)

∧(¬𝑏31∨𝑏34)∧(𝑏31∨𝑏32∨𝑏33∨𝑏35∨𝑏36)
𝑏15 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨¬𝑏35)∧(¬𝑏34∨𝑏35)

∧(¬𝑏33∨𝑏35)∧(¬𝑏32∨𝑏35)
∧(𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏36)

𝑏16 (𝑏31∨𝑏32∨𝑏33∨𝑏34∨𝑏35)∧𝑏36

A.8 Bank

Bank Bits Physical Address Bits

𝑏0 𝑏21⊕𝑏25
𝑏1 𝑏22⊕𝑏26

B Examining integriTEE

B.1 integriTEE Overview

integriTEE isaproject in thePolkadot communityaiming toaddress
the issues of scalability, interoperability, and confidentiality that
typically affect blockchains [16]. To help solve the aforementioned
problems, integriTEE looks towards TEEs, and SGX in particular.
integriTEE users can benefit from a number of SGX-backed
offerings including: sidechains; trusted off-chain computation; and
oracles, which provide on-chain-access to off-chain data.

Uniquely, they also offer attestation infrastructure: Attesteer is
a service the integriTEE network provides for remote attestation.
The network maintains a registry of properly attested enclaves
[18], along with their DCAP attestation status, which obviates the
need to interact with Intel directly. When an enclave registers on
integriTEE, it provides a quote as part of the standard remote
attestation process. Assuming it verifies, this quote is then saved by
the network.When users look to perform some off-chain operations,
they can find a pre-populated list of enclaves that they could use
immediately. Without Attesteer, the enclave would need to perform
remote attestation with its client to prove enclavehood. But if the
client trusts this registry, then there is no need.
Components. The integriTEE blockchain is a member of the
wider Polkadot ecosystem. These members, dubbed “parachains”,
all share the same base “relay” blockchain (Polkadot) for consensus.
integriTEE has three principal components: an enclave worker
component, the Polkadot relay chain, and the integriTEEparachain
itself. The parachain is a custom blockchain architected by integri-
TEE which implements its SGX feature set and hosts its native TEER
tokens. The relay chain is the overarching blockchain maintained
by Polkadot itself that handles inter-chain communication and
maintains overall consensus and shared security. The enclave
worker component is responsible for handling integriTEE’s
various features. This worker can be configured to be a sidechain
validator, a trusted off-chain worker, or an oracle. The sidechain
validators and off-chain workers both increase the maximum
throughput of the network in addition to providing support for
private transactions and execution. Their oracle, named TEEracle,
is a blockchain oracle framework that allows for on-chain contracts
to access off-chain data. Typically, traditional smart contracts are
limited to accessing only the data on the blockchain, but TEEracle
facilitates on-chain access to real-world data through SGX.
integriTEE Security Guarantees. The aforementioned
use cases all require some guarantee provided by SGX. As an
intermediary of data, TEEracle must not be able to lie and must
faithfully represent real-world data. integriTEE uses TEEracle
directly for fetching TEER exchange rates, for example. A malicious
oracle operator could falsify the exchange rate to manipulate the
market for their own gain. Ordinarily, blockchain consensus is
used to enforce integrity of execution, but here SGX fills that role
instead. But replication of work is expensive and inefficient, so the
sidechain validator and trusted off-chain worker both substitute
consensuswith SGX for its guarantees of correct execution.Without
it, validators could forge transactions andworkers could claim credit
for work not done (like with Crust). Additionally, SGX provides
privacy which allows for confidential transactions and computation.
Enclave Registration. When a node operator wishes to run a
worker node, they must first deposit some TEER in the worker en-
clave’s account. This deposit allows the node to interact with the
network. Theworker enclave then generates an asymmetric key pair
to facilitate communication and to serve as an identifier. Similar to
priorprojectsdiscussed, since thiskey isgenerated inside theenclave,
communication encryptedwith this public key is ostensibly readable
by the enclave itself only. During startup, the node will generate an
enclave report including its public key in the report data. (Thus attest-
ing that this public key is the enclave.) The enclave generates a quote

WireTap: Breaking Server SGX via DRAMBus Interposition CCS ’25, October 13–17, 2025, Taipei, Taiwan

for this report and submits it to the network, where it is then veri-
fied and stored. Since integriTEEmaintains a registry of attested
enclaves and their respective public keys, users and applications
communicating with enclaves will not need to verify attestations
themselves. They can simply check the registry for the node’s status.

B.2 Extracting Data From integriTEE

Setup. We use the same hardware setup as in all prior attacks.
We first set up a node on the integriTEE testnet (with both the
parachain and relay chain components), following the integriTEE
documentation [17], and we allow them both to synchronize. Note
that this setup is strictly unnecessary, as the quote verification
happens on-chain. We could choose to submit our quote to any
node, but we ran our own for easy log access during testing. We
compile and run a worker configured as a sidechain validator.
Modifying the integriTEE Enclave. We patch the worker
enclave to return a custom report. Rather than its own mrsigner,
we choose that of an unmodified production enclave. We chose a
random mrenclave value, clear the debug flag and fill the rest of the
report correctly. With the attestation key extracted in Section 6.3,
we create our own quote and forge the signature. Then execution
resumes as usual. The enclave sends the quote to the network where
it verifies successfully and is placed on the registry. At this point
it is as if we had a proper production enclave on the network.
ReadingData From integriTEE. For ethical considerations, we
created a local testnet to demonstrate the effects of our compromised
enclave. Simply by usingGDB (as our “production” enclave is really a
debug one in disguise), we are able to access private transactions for
integriTEE’s incognito accounts (and those of other parachains
when shielded to the integriTEE network); and more generally,
we can access any off-chain computations submitted to our node.
We can also modify oracles to return falsified information of our
choosing, thus causing them to provide any view of real world data
to the chain that we choose.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Intel Software Guard Extensions
	2.2 Remote Attestation
	2.3 Attacks on TEEs
	2.4 Caches
	2.5 Memory

	3 Threat Model and Target Setup
	4 Building a Cheap DRAM Interposition Setup
	4.1 Slowing Down Bus Transactions
	4.2 Building a DDR4 Bus Interposition Setup
	4.3 Observing Bus Transactions

	5 Controlling Enclave Memory Layouts
	5.1 Reverse Engineering DRAM Addressing
	5.2 Pinning SGX Memory
	5.3 Forcing DRAM Traffic

	6 Attacking SGX Encryption
	6.1 Verifying Determinism
	6.2 Attacking SGX Attestation
	6.3 Recovering DCAP Attestation Keys

	7 Breaching Confidentiality of Enclave Data
	7.1 phala Overview
	7.2 Removing the Layers of Phat Contracts
	7.3 secret Overview
	7.4 Extracting Secrets from secret
	7.5 Directly Attacking Enclave Secrets

	8 Compromising Integrity Guarantees
	8.1 crust Network Overview
	8.2 Storing Gigabytes of Data with Only 32 Bytes

	9 Mitigations and Future Work
	10 Conclusion
	Acknowledgments
	References
	A Miscellaneous Mapping Functions
	A.1 ChannelAddress
	A.2 RankAddress
	A.3 Column
	A.4 BankGroup
	A.5 MemoryControllerId
	A.6 ChannelId
	A.7 Row
	A.8 Bank

	B Examining integriTEE
	B.1 integriTEE Overview
	B.2 Extracting Data From integriTEE

